論文の概要: Quantile Regression for Distributional Reward Models in RLHF
- arxiv url: http://arxiv.org/abs/2409.10164v1
- Date: Mon, 16 Sep 2024 10:54:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 15:50:18.737102
- Title: Quantile Regression for Distributional Reward Models in RLHF
- Title(参考訳): RLHFにおける分布リワードモデルの量子回帰
- Authors: Nicolai Dorka,
- Abstract要約: 我々は,1つのスカラー値の代わりに報酬よりも分布を学習する,報酬モデリングの新しいアプローチであるQuantile Reward Models(QRMs)を紹介する。
提案手法は量子レグレッションを用いて、選好よりも完全な、潜在的に多モード分布を推定し、より強力でニュアンスな選好表現を提供する。
実験の結果,QRMはRewardBench上での従来の点推定モデルよりも優れていた。
- 参考スコア(独自算出の注目度): 1.8130068086063336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning from human feedback (RLHF) has become a key method for aligning large language models (LLMs) with human preferences through the use of reward models. However, traditional reward models typically generate point estimates, which oversimplify the diversity and complexity of human values and preferences. In this paper, we introduce Quantile Reward Models (QRMs), a novel approach to reward modeling that learns a distribution over rewards instead of a single scalar value. Our method uses quantile regression to estimate a full, potentially multimodal distribution over preferences, providing a more powerful and nuanced representation of preferences. This distributional approach can better capture the diversity of human values, addresses label noise, and accommodates conflicting preferences by modeling them as distinct modes in the distribution. Our experimental results show that QRM outperforms comparable traditional point-estimate models on RewardBench. Furthermore, we demonstrate that the additional information provided by the distributional estimates can be utilized in downstream applications, such as risk-aware reinforcement learning, resulting in LLM policies that generate fewer extremely negative responses. Our code and model are released at https://github.com/Nicolinho/QRM.
- Abstract(参考訳): 人間のフィードバックからの強化学習(RLHF)は、報酬モデルを用いることで、大きな言語モデル(LLM)と人間の嗜好を整合させる重要な方法となっている。
しかし、伝統的な報酬モデルは通常、人間の価値と嗜好の多様性と複雑さを過度に単純化する点推定を生成する。
本稿では,1つのスカラー値の代わりに報酬の分布を学習する,報酬モデリングの新しいアプローチであるQuantile Reward Models(QRMs)を紹介する。
提案手法は量子レグレッションを用いて、より強力で曖昧な選好表現を提供するために、選好よりも完全な、潜在的に多モーダルな分布を推定する。
この分布的アプローチは、人間の値の多様性をよりよく捉え、ラベルのノイズに対処し、それらを分布の異なるモードとしてモデル化することで矛盾する好みに対応する。
実験の結果,QRMはRewardBench上での従来の点推定モデルよりも優れていた。
さらに、リスク認識強化学習などの下流アプリケーションにおいて、分布推定によって提供される付加情報が活用できることを示し、その結果、極端に負の反応を生じないLCMポリシーが生じることを示した。
私たちのコードとモデルはhttps://github.com/Nicolinho/QRM.comで公開されています。
関連論文リスト
- DogeRM: Equipping Reward Models with Domain Knowledge through Model Merging [65.41765072566287]
textbfDomain knowledtextbfge merged textbfReward textbfModel(DogeRM)を提案する。
論文 参考訳(メタデータ) (2024-07-01T17:01:54Z) - RLHF from Heterogeneous Feedback via Personalization and Preference Aggregation [24.374185140811115]
人間からのフィードバックからの強化学習(RLHF)は、AIシステムを人間の価値と整合させる効果的な手法である。
本稿では、人間の嗜好に固有の異質性や、フィードバックの提供における潜在的な戦略的行動から、この問題に対処することに焦点を当てる。
本研究では, 個人化に基づく手法と集約に基づく手法の2つの枠組みを提案する。
論文 参考訳(メタデータ) (2024-04-30T23:57:23Z) - RewardBench: Evaluating Reward Models for Language Modeling [100.28366840977966]
本稿では,報酬モデル評価のためのベンチマークデータセットとコードベースであるRewardBenchを紹介する。
データセットは、チャット、推論、安全性にまたがる、プロンプト・チョーゼン・リジェクトされたトリオのコレクションである。
RewardBenchのリーダーボードでは、様々な方法で訓練された報酬モデルを評価する。
論文 参考訳(メタデータ) (2024-03-20T17:49:54Z) - Aligning Crowd Feedback via Distributional Preference Reward Modeling [28.754532173765686]
本研究では,大規模言語モデルと多様な人間の嗜好を一致させるために,DPRM(Distributedal Preference Reward Model)を提案する。
実験の結果,DPRM は LLM と人口嗜好の整合性を著しく向上させ,より正確で偏りがなく,文脈的に適切な応答をもたらすことが示された。
論文 参考訳(メタデータ) (2024-02-15T07:29:43Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
本稿では,データセットにおける不正確で曖昧な嗜好の影響を軽減するために,一連の新しい手法を紹介する。
また、選択された応答と拒否された応答を区別する報酬モデルの有用性を高めるために、対照的な学習を導入する。
論文 参考訳(メタデータ) (2024-01-11T17:56:59Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Distributional Reinforcement Learning for Multi-Dimensional Reward
Functions [91.88969237680669]
多次元分布DQN(MD3QN)を導入し、複数の報酬源からの共振分布をモデル化する。
関節分布モデリングの副産物として、MD3QNは各報酬源に対するリターンのランダム性を捉えることができる。
実験では,リッチな相関型報酬関数を持つ環境下での連立戻り分布を精度良くモデル化した。
論文 参考訳(メタデータ) (2021-10-26T11:24:23Z) - AvgOut: A Simple Output-Probability Measure to Eliminate Dull Responses [97.50616524350123]
機能エンジニアリングなしで、どの発話やトークンが退屈であるかを動的に認識する対話モデルを構築します。
最初のモデルMinAvgOutは、各バッチの出力分布を通して、ダイバーシティスコアを直接最大化する。
第2のモデルであるラベルファインチューニング(LFT)は、多様性スコアによって連続的にスケールされたラベルをソースシーケンスにプリペイドし、多様性レベルを制御する。
3つ目のモデルであるRLは強化学習を採用し、多様性スコアを報奨信号として扱う。
論文 参考訳(メタデータ) (2020-01-15T18:32:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。