Exploring Quantum Contextuality with the Quantum Moebius-Escher-Penrose hypergraph
- URL: http://arxiv.org/abs/2409.10179v1
- Date: Mon, 16 Sep 2024 11:17:53 GMT
- Title: Exploring Quantum Contextuality with the Quantum Moebius-Escher-Penrose hypergraph
- Authors: Mirko Navara, Karl Svozil,
- Abstract summary: This study presents the quantum Moebius-Escher-Penrose hypergraph, drawing inspiration from paradoxical constructs such as the Moeobius strip and Penrose's impossible objects'
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study presents the quantum Moebius-Escher-Penrose hypergraph, drawing inspiration from paradoxical constructs such as the Moeobius strip and Penrose's `impossible objects'. The hypergraph is constructed using faithful orthogonal representations in Hilbert space, thereby embedding the graph within a quantum framework. Additionally, a quasi-classical realization is achieved through two-valued states and partition logic, leading to an embedding within Boolean algebra. This dual representation delineates the distinctions between classical and quantum embeddings, with a particular focus on contextuality, highlighted by violations of exclusivity and completeness, quantified through classical and quantum probabilities. The study also examines violations of Boole's conditions of possible experience using correlation polytopes, underscoring the inherent contextuality of the hypergraph. These results offer deeper insights into quantum contextuality and its intricate relationship with classical logic structures.
Related papers
- An abstract structure determines the contextuality degree of observable-based Kochen-Specker proofs [0.09208007322096533]
This article focuses on proofs of the Kochen-Specker theorem obtained by assigning Pauli observables to hypergraph vertices satisfying a given commutation relation.
A first result is that all these quantum labelings satisfying the conditions of a given hypergram inherently possess the same degree of contextuality.
arXiv Detail & Related papers (2024-10-18T13:45:31Z) - A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - Insights into Quantum Contextuality and Bell Nonclassicality: A Study on
Random Pure Two-Qubit Systems [0.0]
We explore the relationship between Kochen-Specker quantum contextuality and Bell-nonclassicality for ensembles of two-qubit pure states.
We present a comparative analysis showing that the violation of a noncontextuality inequality on a given quantum state reverberates on the Bell-nonclassicality of the considered state.
arXiv Detail & Related papers (2023-10-13T12:14:11Z) - Form of Contextuality Predicting Probabilistic Equivalence between Two Sets of Three Mutually Noncommuting Observables [0.0]
We introduce a contextual quantum system comprising mutually complementary observables organized into two or more collections of pseudocontexts with the same probability sums of outcomes.
These pseudocontexts constitute non-orthogonal bases within the Hilbert space, featuring a state-independent sum of probabilities.
The measurement contextuality in this setup arises from the quantum realizations of the hypergraph, which adhere to a specific bound on the linear combination of probabilities.
arXiv Detail & Related papers (2023-09-22T08:51:34Z) - Matter relative to quantum hypersurfaces [44.99833362998488]
We extend the Page-Wootters formalism to quantum field theory.
By treating hypersurfaces as quantum reference frames, we extend quantum frame transformations to changes between classical and nonclassical hypersurfaces.
arXiv Detail & Related papers (2023-08-24T16:39:00Z) - Comparing two cohomological obstructions for contextuality, and a
generalised construction of quantum advantage with shallow circuits [0.0]
We show that a restricted class of quantum circuits is more powerful than its classical analogue.
A class of circuits of bounded depth and fan-in (shallow circuits) exploits a particular family of examples of contextuality.
A systematic way of taking examples of contextuality and producing unconditional quantum advantage results with shallow circuits.
arXiv Detail & Related papers (2022-12-19T11:43:37Z) - Genuine multipartite entanglement and quantum coherence in an
electron-positron system: Relativistic covariance [117.44028458220427]
We analyze the behavior of both genuine multipartite entanglement and quantum coherence under Lorentz boosts.
A given combination of these quantum resources is shown to form a Lorentz invariant.
arXiv Detail & Related papers (2021-11-26T17:22:59Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Probing Topological Spin Liquids on a Programmable Quantum Simulator [40.96261204117952]
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states.
In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states.
The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators.
arXiv Detail & Related papers (2021-04-09T00:18:12Z) - The logic of contextuality [0.0]
Contextuality is a key signature of quantum non-classicality.
We study the logic of contextuality in the setting of partial Boolean algebras.
arXiv Detail & Related papers (2020-11-05T19:04:04Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.