Exploring the boundary of quantum correlations with a time-domain optical processor
- URL: http://arxiv.org/abs/2208.07794v3
- Date: Wed, 29 Jan 2025 19:13:10 GMT
- Title: Exploring the boundary of quantum correlations with a time-domain optical processor
- Authors: Zheng-Hao Liu, Yu Meng, Yu-Ze Wu, Ze-Yan Hao, Zhen-Peng Xu, Cheng-Jun Ai, Hai Wei, Kai Wen, Jing-Ling Chen, Jie Ma, Jin-Shi Xu, Chuan-Feng Li, Guang-Can Guo,
- Abstract summary: We derive a GHZ-type paradox with a context-cover number of three and show this number saturates the lower bound posed by quantum theory.
By proposing and studying a strong form of contextuality in high-dimensional Hilbert space, our results pave the way for the exploration of exotic quantum correlations with time-multiplexed optical systems.
- Score: 16.003717185276052
- License:
- Abstract: Contextuality is a hallmark feature of the quantum theory that captures its incompatibility with any noncontextual hidden-variable model. The Greenberger--Horne--Zeilinger (GHZ)-type paradoxes are proofs of contextuality that reveal this incompatibility with deterministic logical arguments. However, the GHZ-type paradox whose events can be included in the fewest contexts and which brings the strongest nonclassicality remains elusive. Here, we derive a GHZ-type paradox with a context-cover number of three and show this number saturates the lower bound posed by quantum theory. We demonstrate the paradox with a time-domain fiber optical platform and recover the quantum prediction in a 37-dimensional setup based on high-speed modulation, convolution, and homodyne detection of time-multiplexed pulsed coherent light. By proposing and studying a strong form of contextuality in high-dimensional Hilbert space, our results pave the way for the exploration of exotic quantum correlations with time-multiplexed optical systems.
Related papers
- Parrondo's paradox in quantum walks with inhomogeneous coins [0.0]
Parrondo's paradox is a counterintuitive phenomenon where two losing strategies combine to produce a winning outcome.
In this study, we investigate the manifestation of Parrondo's paradox in discrete-time quantum walks.
arXiv Detail & Related papers (2024-07-23T15:14:12Z) - Causality and a possible interpretation of quantum mechanics [2.7398542529968477]
Based on quantum field theory, our work provides a framework that harmoniously integrates relativistic causality, quantum non-locality, and quantum measurement.
We use reduced density matrices to represent the local information of the quantum state and show that the reduced density matrices cannot evolve superluminally.
Unlike recent approaches that focus on causality by introducing new operators to describe detectors, we consider that everything--including detectors, environments, and humans--is composed of the same fundamental fields.
arXiv Detail & Related papers (2024-02-08T07:07:22Z) - Certified Quantumness via Single-Shot Temporal Measurements [0.0]
Bell-Kochen-Specker theorem states that a non-contextual hidden- variable theory cannot reproduce predictions of quantum mechanics.
Asher Peres gave a simple proof of quantum contextuality in a four-dimensional Hilbert space of two spin-1/2 particles.
We present a similar proof in time with a temporal version of the Peres-like argument.
arXiv Detail & Related papers (2022-06-06T12:42:32Z) - Quantum time dilation in a gravitational field [39.58317527488534]
We investigate how the superposition principle affects the gravitational time dilation observed by a simple clock.
We show that the emission rate of an atom prepared in a coherent superposition of separated wave packets in a gravitational field is different from the emission rate of an atom in a classical mixture of these packets.
arXiv Detail & Related papers (2022-04-22T10:02:21Z) - Genuine multipartite entanglement and quantum coherence in an
electron-positron system: Relativistic covariance [117.44028458220427]
We analyze the behavior of both genuine multipartite entanglement and quantum coherence under Lorentz boosts.
A given combination of these quantum resources is shown to form a Lorentz invariant.
arXiv Detail & Related papers (2021-11-26T17:22:59Z) - Finite-temperature quantum discordant criticality [0.0]
In quantum statistical mechanics, finite-temperature phase transitions are governed by classical field theories.
Recent contributions have shown how entanglement is typically very short-ranged, and thus uninformative about long-ranged critical correlations.
We show the existence of finite-temperature phase transitions where a broader form of quantum correlation than entanglement, the entropic quantum discord, can display genuine signatures of critical behavior.
arXiv Detail & Related papers (2021-10-20T14:45:51Z) - Duality approach to quantum annealing of the 3-XORSAT problem [0.0]
We study the performance of quantum algorithms for models with a unique ground state on simple hypergraphs.
The degeneracy of classical ground state manifold translates into the emergence of an extensive number of $Z$ symmetries.
The duality developed in this work provides a practical tool for studies of quantum models with classically degenerate energy manifold.
arXiv Detail & Related papers (2021-06-11T12:30:08Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z) - Quantum time dilation: A new test of relativistic quantum theory [91.3755431537592]
A novel quantum time dilation effect is shown to arise when a clock moves in a quantum superposition of two relativistic velocities.
This effect is argued to be measurable using existing atomic interferometry techniques, potentially offering a new test of relativistic quantum theory.
arXiv Detail & Related papers (2020-04-22T19:26:53Z) - Projection evolution and quantum spacetime [68.8204255655161]
We discuss the problem of time in quantum mechanics.
An idea of construction of a quantum spacetime as a special set of the allowed states is presented.
An example of a structureless quantum Minkowski-like spacetime is also considered.
arXiv Detail & Related papers (2019-10-24T14:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.