Intracavity squeezing for Kerr QND Measurement scheme
- URL: http://arxiv.org/abs/2409.10222v1
- Date: Mon, 16 Sep 2024 12:18:02 GMT
- Title: Intracavity squeezing for Kerr QND Measurement scheme
- Authors: Dariya Salykina, Stepan Balybin, Farid Ya. Khalili,
- Abstract summary: Scheme of quantum non-demolition measurement of optical quanta was analyzed.
Main factor that limits the sensitivity of the considered scheme is the interplay of optical losses and the non-linear self-phase modulation (SPM) effect.
Using the best optical microresonators currently available, the single-photon sensitivity for the intracavity photon number can be achieved.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Ref. [Phys. Rev. A 108, 053708], the scheme of quantum non-demolition measurement of optical quanta that uses a resonantly enhanced Kerr nonlinearity in the optical microresonator, pre-squeezing of the probe beam, and its parametric amplification before the detection, was analyzed theoretically. It was shown that the main factor that limits the sensitivity of the considered scheme is the interplay of optical losses and the non-linear self-phase modulation (SPM) effect. Here we show that using the intracavity squeezing of the probe beam in this scheme, it is possible to cancel out the SPM effect. In this case, the sensitivity will be limited only by the available power in the pump beam and by the input/output losses in the signal beam. Our estimates show, that using the best optical microresonators currently available, the single-photon sensitivity for the intracavity photon number can be achieved. Therefore, this scheme could be of interest for optical quantum information processing tasks.
Related papers
- Quantum-like nonlinear interferometry with frequency-engineered classical light [0.0]
We present a "quantum-like" nonlinear optical method that reaches super-resolution in single-photon detection regime.
This is achieved by replacing photon-pairs by coherent states of light, mimicking quantum properties through classical nonlinear optics processes.
arXiv Detail & Related papers (2024-09-18T15:22:25Z) - Demonstration of Lossy Linear Transformations and Two-Photon Interference on a Photonic Chip [78.1768579844556]
We show that engineered loss, using an auxiliary waveguide, allows one to invert the spatial statistics from bunching to antibunching.
We study the photon statistics within the loss-emulating channel and observe photon coincidences, which may provide insights into the design of quantum photonic integrated chips.
arXiv Detail & Related papers (2024-04-09T06:45:46Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Improving Kerr QND measurement sensitivity via squeezed light [0.0]
We show that by using a squeezed quantum state of the probe beam and the anti-squeezing beam at the output of the microresonator, it is possible to reduce the measurement imprecision by about one order of magnitude.
The resulting sensitivity allows to generate and verify multi-photon non-Gaussian quantum states of light.
arXiv Detail & Related papers (2022-10-03T12:20:46Z) - Quantifying n-photon indistinguishability with a cyclic integrated
interferometer [40.24757332810004]
We report on a universal method to measure the genuine indistinguishability of n-photons.
Our approach relies on a low-depth cyclic multiport interferometer with N = 2n modes.
We experimentally demonstrate this technique for a 8-mode integrated interferometer fabricated using femtosecond laser micromachining.
arXiv Detail & Related papers (2022-01-31T16:30:52Z) - QND measurements of photon number in monolithic microcavities [0.0]
We revisit the idea of quantum nondemolition measurement (QND) of optical quanta.
We show that the monolithic microcavities enable QND measurement of number of quanta in a weak signal field.
We show that the best modern monolithic microcavities allow achieving the measurement imprecision several times better than the standard quantum limit.
arXiv Detail & Related papers (2021-11-29T17:00:15Z) - Dissipative Quantum Feedback in Measurements Using a Parametrically
Coupled Microcavity [0.0]
Micro- and nanoscale optical or microwave cavities are used in a wide range of classical applications and quantum science experiments.
Dissipative photon absorption can result in quantum feedback via in-loop field detection of the absorbed optical field.
We experimentally observe such unanticipated dissipative dynamics in optomechanical spectroscopy of sideband-cooled optomechanical crystal cavities.
arXiv Detail & Related papers (2021-09-29T15:12:45Z) - Magneto Optical Sensing beyond the Shot Noise Limit [0.2446672595462589]
We propose a truncated nonlinear interferometric readout for low-temperature magneto-optical Kerr effect measurements.
We show that 10 $textnrad/sqrttextHz$ sensitivity is achievable with optical power as small as 1 $mu$W.
arXiv Detail & Related papers (2021-08-03T01:53:46Z) - Photorefractive effect in LiNbO$_3$-based integrated-optical circuits
for continuous variable experiments [45.82374977939355]
Photorefractive effect might compromise success of on-chip quantum photonics experiments.
We focus on photorefractive effect induced by light at 775 nm, in the context of the generation of non-classical light at 1550 nm telecom wavelength.
arXiv Detail & Related papers (2020-07-22T12:37:45Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.