Privacy-Preserving Distributed Maximum Consensus Without Accuracy Loss
- URL: http://arxiv.org/abs/2409.10226v1
- Date: Mon, 16 Sep 2024 12:21:04 GMT
- Title: Privacy-Preserving Distributed Maximum Consensus Without Accuracy Loss
- Authors: Wenrui Yu, Richard Heusdens, Jun Pang, Qiongxiu Li,
- Abstract summary: In distributed networks, calculating the maximum element is a fundamental task.
Despite its importance, privacy in distributed maximum consensus has received limited attention in the literature.
We propose a novel distributed optimization-based approach that preserves privacy without sacrificing accuracy.
- Score: 8.539683760001575
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In distributed networks, calculating the maximum element is a fundamental task in data analysis, known as the distributed maximum consensus problem. However, the sensitive nature of the data involved makes privacy protection essential. Despite its importance, privacy in distributed maximum consensus has received limited attention in the literature. Traditional privacy-preserving methods typically add noise to updates, degrading the accuracy of the final result. To overcome these limitations, we propose a novel distributed optimization-based approach that preserves privacy without sacrificing accuracy. Our method introduces virtual nodes to form an augmented graph and leverages a carefully designed initialization process to ensure the privacy of honest participants, even when all their neighboring nodes are dishonest. Through a comprehensive information-theoretical analysis, we derive a sufficient condition to protect private data against both passive and eavesdropping adversaries. Extensive experiments validate the effectiveness of our approach, demonstrating that it not only preserves perfect privacy but also maintains accuracy, outperforming existing noise-based methods that typically suffer from accuracy loss.
Related papers
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - Balancing Innovation and Privacy: Data Security Strategies in Natural Language Processing Applications [3.380276187928269]
This research addresses privacy protection in Natural Language Processing (NLP) by introducing a novel algorithm based on differential privacy.
By introducing a differential privacy mechanism, our model ensures the accuracy and reliability of data analysis results while adding random noise.
The proposed algorithm's efficacy is demonstrated through performance metrics such as accuracy (0.89), precision (0.85), and recall (0.88)
arXiv Detail & Related papers (2024-10-11T06:05:10Z) - Private Optimal Inventory Policy Learning for Feature-based Newsvendor with Unknown Demand [13.594765018457904]
This paper introduces a novel approach to estimate a privacy-preserving optimal inventory policy within the f-differential privacy framework.
We develop a clipped noisy gradient descent algorithm based on convolution smoothing for optimal inventory estimation.
Our numerical experiments demonstrate that the proposed new method can achieve desirable privacy protection with a marginal increase in cost.
arXiv Detail & Related papers (2024-04-23T19:15:43Z) - TernaryVote: Differentially Private, Communication Efficient, and
Byzantine Resilient Distributed Optimization on Heterogeneous Data [50.797729676285876]
We propose TernaryVote, which combines a ternary compressor and the majority vote mechanism to realize differential privacy, gradient compression, and Byzantine resilience simultaneously.
We theoretically quantify the privacy guarantee through the lens of the emerging f-differential privacy (DP) and the Byzantine resilience of the proposed algorithm.
arXiv Detail & Related papers (2024-02-16T16:41:14Z) - A Summary of Privacy-Preserving Data Publishing in the Local Setting [0.6749750044497732]
Statistical Disclosure Control aims to minimize the risk of exposing confidential information by de-identifying it.
We outline the current privacy-preserving techniques employed in microdata de-identification, delve into privacy measures tailored for various disclosure scenarios, and assess metrics for information loss and predictive performance.
arXiv Detail & Related papers (2023-12-19T04:23:23Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability.
We study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP)
More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms.
arXiv Detail & Related papers (2023-02-19T16:58:53Z) - No Free Lunch in "Privacy for Free: How does Dataset Condensation Help
Privacy" [75.98836424725437]
New methods designed to preserve data privacy require careful scrutiny.
Failure to preserve privacy is hard to detect, and yet can lead to catastrophic results when a system implementing a privacy-preserving'' method is attacked.
arXiv Detail & Related papers (2022-09-29T17:50:23Z) - Privacy-Preserving Distributed Expectation Maximization for Gaussian
Mixture Model using Subspace Perturbation [4.2698418800007865]
federated learning is motivated by the privacy concern as it does not allow to transmit private data but only intermediate updates.
We propose a fully decentralized privacy-preserving solution, which is able to securely compute the updates in each step.
Numerical validation shows that the proposed approach has superior performance compared to the existing approach in terms of both the accuracy and privacy level.
arXiv Detail & Related papers (2022-09-16T09:58:03Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
Decentralized optimization is the basic building block of modern collaborative machine learning, distributed estimation and control, and large-scale sensing.
Since involved data, privacy protection has become an increasingly pressing need in the implementation of decentralized optimization algorithms.
arXiv Detail & Related papers (2022-05-08T14:38:23Z) - Robustness Threats of Differential Privacy [70.818129585404]
We experimentally demonstrate that networks, trained with differential privacy, in some settings might be even more vulnerable in comparison to non-private versions.
We study how the main ingredients of differentially private neural networks training, such as gradient clipping and noise addition, affect the robustness of the model.
arXiv Detail & Related papers (2020-12-14T18:59:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.