論文の概要: Hierarchical Graph Pooling Based on Minimum Description Length
- arxiv url: http://arxiv.org/abs/2409.10263v1
- Date: Mon, 16 Sep 2024 13:13:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-09-17 15:30:17.007985
- Title: Hierarchical Graph Pooling Based on Minimum Description Length
- Title(参考訳): 最小記述長に基づく階層型グラフポーリング
- Authors: Jan von Pichowski, Christopher Blöcker, Ingo Scholtes,
- Abstract要約: 実世界のグラフの階層構造を考慮に入れた,原理的なプール演算子であるMapEqPoolを紹介する。
我々は,MapEqPoolの競合性能を,標準グラフ分類データセットのさまざまなベースラインに対して実証的に比較した。
- 参考スコア(独自算出の注目度): 0.716879432974126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph pooling is an essential part of deep graph representation learning. We introduce MapEqPool, a principled pooling operator that takes the inherent hierarchical structure of real-world graphs into account. MapEqPool builds on the map equation, an information-theoretic objective function for community detection based on the minimum description length principle which naturally implements Occam's razor and balances between model complexity and fit. We demonstrate MapEqPool's competitive performance with an empirical comparison against various baselines across standard graph classification datasets.
- Abstract(参考訳): グラフプーリングはディープグラフ表現学習の重要な部分である。
実世界のグラフの階層構造を考慮に入れた,原理的なプール演算子であるMapEqPoolを紹介する。
MapEqPoolは、Occamのカミソリを自然に実装する最小記述長原理と、モデルの複雑さと適合性のバランスに基づいて、コミュニティ検出のための情報理論の客観的関数であるMap equationに基づいている。
我々は,MapEqPoolの競合性能を,標準グラフ分類データセットのさまざまなベースラインに対して実証的に比較した。
関連論文リスト
- Geometry-Aware Edge Pooling for Graph Neural Networks [20.080879481223924]
グラフニューラルネットワーク(GNN)は、グラフベースのタスクで大きな成功を収めている。
現実世界のアプリケーションにおける大規模なデータセットの普及により、プール層はGNNの重要なコンポーネントである。
本稿では,エッジ崩壊による構造を考慮した新しいグラフプーリング層を提案する。
論文 参考訳(メタデータ) (2025-06-13T12:01:46Z) - DA-MoE: Addressing Depth-Sensitivity in Graph-Level Analysis through Mixture of Experts [70.21017141742763]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを処理することで人気を集めている。
既存のメソッドは通常、固定数のGNNレイヤを使用して、すべてのグラフの表現を生成する。
本稿では,GNNに2つの改良を加えたDA-MoE法を提案する。
論文 参考訳(メタデータ) (2024-11-05T11:46:27Z) - SSHPool: The Separated Subgraph-based Hierarchical Pooling [47.78745802682822]
グラフ分類のための新しい局所グラフプーリング法,すなわち分離部分グラフベース階層プール(SSH)を開発した。
局所グラフ畳み込み単位を局所構造として個別に用いて各部分グラフをより粗いノードに圧縮する。
我々は、グラフ分類のためのSSHPoolモジュールに関連するエンドツーエンドのGNNフレームワークを開発する。
論文 参考訳(メタデータ) (2024-03-24T13:03:35Z) - RGM: A Robust Generalizable Matching Model [49.60975442871967]
RGM(Robust Generalist Matching)と呼ばれる疎密マッチングのための深部モデルを提案する。
合成トレーニングサンプルと実世界のシナリオのギャップを狭めるために、我々は、疎対応基盤真理を持つ新しい大規模データセットを構築した。
さまざまな密集したスパースなデータセットを混ぜ合わせることができ、トレーニングの多様性を大幅に改善しています。
論文 参考訳(メタデータ) (2023-10-18T07:30:08Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
長距離依存のモデリングは、コンピュータビジョンにおけるシーン理解タスクに不可欠である。
完全連結グラフはそのようなモデリングには有益であるが、計算オーバーヘッドは禁じられている。
本稿では,計算複雑性を大幅に低減する動的グラフメッセージパッシングネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T14:41:37Z) - Higher-order Clustering and Pooling for Graph Neural Networks [77.47617360812023]
グラフニューラルネットワークは、多数のグラフ分類タスクにおいて最先端のパフォーマンスを達成する。
HoscPoolはクラスタリングベースのグラフプーリング演算子で、階層的に高階情報をキャプチャする。
グラフ分類タスクにおいてHoscPoolを評価し,そのクラスタリングコンポーネントを地層構造を持つグラフ上で評価する。
論文 参考訳(メタデータ) (2022-09-02T09:17:10Z) - FlowPool: Pooling Graph Representations with Wasserstein Gradient Flows [3.655021726150369]
既存のグラフプーリング法は、グラフ表現とそのプールバージョンとの類似性に関して保証を提供しない。
本稿では,ワッサーシュタイン距離を最小にすることで,グラフ表現の統計をプールされたデータに最適に保存するプーリング法であるFlowPoolを提案する。
本手法は自動微分が可能であり,エンドツーエンドのディープラーニングアーキテクチャに組み込むことができる。
論文 参考訳(メタデータ) (2021-12-18T20:07:06Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
本稿では,重要なグラフ構造情報を活用するために,クロスビューグラフプーリング(Co-Pooling)手法を提案する。
クロスビュー相互作用、エッジビュープーリング、ノードビュープーリングにより、相互にシームレスに強化され、より情報的なグラフレベルの表現が学習される。
論文 参考訳(メタデータ) (2021-09-24T08:01:23Z) - Structure-Aware Hierarchical Graph Pooling using Information Bottleneck [2.7088996845250897]
グラフプーリングは、グラフ分類および回帰タスクにおけるグラフニューラルネットワーク(GNN)の重要な要素です。
本稿では,情報ボトルネック(IB)の原理を応用した,HIBPoolという新しいプール手法を提案する。
また,グラフの局所部分グラフ構造をキャプチャするために,新しい構造認識型識別プーリング読み出し(dip-readout)関数を導入する。
論文 参考訳(メタデータ) (2021-04-27T07:27:43Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
本稿では,その構造的依存関係に応じてノード間の相互作用をキャプチャするグラフマルチセットトランス (GMT) を提案する。
実験の結果,GMTはグラフ分類ベンチマークにおいて,最先端のグラフプーリング法を著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-02-23T07:45:58Z) - CommPOOL: An Interpretable Graph Pooling Framework for Hierarchical
Graph Representation Learning [74.90535111881358]
新しい解釈可能なグラフプーリングフレームワークである CommPOOL を提案します。
グラフ表現学習プロセスにおいて、グラフの階層的なコミュニティ構造をキャプチャし、保存することができる。
CommPOOLは階層グラフ表現学習のための汎用的で柔軟なフレームワークです。
論文 参考訳(メタデータ) (2020-12-10T21:14:18Z) - Multivariate Time Series Classification with Hierarchical Variational
Graph Pooling [23.66868187446734]
既存のディープラーニングに基づくMTSC技術は、主に単一時系列の時間依存性に関係している。
MTSの表現的グローバル表現を得るために,グラフプーリングに基づく新しいフレームワークMTPoolを提案する。
10のベンチマークデータセットの実験では、MTSCタスクでMTPoolが最先端の戦略を上回っている。
論文 参考訳(メタデータ) (2020-10-12T12:36:47Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - SimPool: Towards Topology Based Graph Pooling with Structural Similarity
Features [0.0]
本稿では,2つの主要な寄与について提案する。1つ目は,隣接行列に基づく構造的類似性を計算した差分モジュールである。
2つ目の主な貢献は、これらの機能をDiffPool arXiv:1806.08804の再検討されたプール層と統合し、SimPoolと呼ばれるプーリング層を提案することである。
実験の結果、エンドツーエンドのグラフニューラルネットワークアーキテクチャの一部として、SimPoolは、より局所性に近いノードクラスタ割り当てを計算する。
論文 参考訳(メタデータ) (2020-06-03T12:51:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。