ReflectDiffu:Reflect between Emotion-intent Contagion and Mimicry for Empathetic Response Generation via a RL-Diffusion Framework
- URL: http://arxiv.org/abs/2409.10289v2
- Date: Wed, 18 Sep 2024 17:30:50 GMT
- Title: ReflectDiffu:Reflect between Emotion-intent Contagion and Mimicry for Empathetic Response Generation via a RL-Diffusion Framework
- Authors: Jiahao Yuan, Zixiang Di, Zhiqing Cui, Guisong Yang, Usman Naseem,
- Abstract summary: We introduce ReflectDiffu, a lightweight framework for empathetic response generation.
It incorporates emotion contagion to augment emotional expressiveness and employs an emotion-reasoning mask to pinpoint critical emotional elements.
It adeptly translates emotional decision-making into precise intent actions, thereby addressing empathetic response misalignments stemming from emotional misrecognition.
- Score: 5.135349405469574
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Empathetic response generation necessitates the integration of emotional and intentional dynamics to foster meaningful interactions. Existing research either neglects the intricate interplay between emotion and intent, leading to suboptimal controllability of empathy, or resorts to large language models (LLMs), which incur significant computational overhead. In this paper, we introduce ReflectDiffu, a lightweight and comprehensive framework for empathetic response generation. This framework incorporates emotion contagion to augment emotional expressiveness and employs an emotion-reasoning mask to pinpoint critical emotional elements. Additionally, it integrates intent mimicry within reinforcement learning for refinement during diffusion. By harnessing an intent twice reflect the mechanism of Exploring-Sampling-Correcting, ReflectDiffu adeptly translates emotional decision-making into precise intent actions, thereby addressing empathetic response misalignments stemming from emotional misrecognition. Through reflection, the framework maps emotional states to intents, markedly enhancing both response empathy and flexibility. Comprehensive experiments reveal that ReflectDiffu outperforms existing models regarding relevance, controllability, and informativeness, achieving state-of-the-art results in both automatic and human evaluations.
Related papers
- Narrative-Centered Emotional Reflection: Scaffolding Autonomous Emotional Literacy with AI [0.0]
Reflexion is an AI-powered platform designed to enable structured emotional self-reflection at scale.
System scaffolds a progressive journey from surface-level emotional recognition toward value-aligned action planning.
arXiv Detail & Related papers (2025-04-29T01:24:46Z) - Disentangle Identity, Cooperate Emotion: Correlation-Aware Emotional Talking Portrait Generation [63.94836524433559]
DICE-Talk is a framework for disentangling identity with emotion and cooperating emotions with similar characteristics.
We develop a disentangled emotion embedder that jointly models audio-visual emotional cues through cross-modal attention.
Second, we introduce a correlation-enhanced emotion conditioning module with learnable Emotion Banks.
Third, we design an emotion discrimination objective that enforces affective consistency during the diffusion process.
arXiv Detail & Related papers (2025-04-25T05:28:21Z) - CTSM: Combining Trait and State Emotions for Empathetic Response Model [2.865464162057812]
Empathetic response generation endeavors to empower dialogue systems to perceive speakers' emotions and generate empathetic responses accordingly.
We propose Combining Trait and State emotions for Empathetic Response Model (CTSM)
To sufficiently perceive emotions in dialogue, we first construct and encode trait and state emotion embeddings.
We further enhance emotional perception capability through an emotion guidance module that guides emotion representation.
arXiv Detail & Related papers (2024-03-22T10:45:13Z) - CauESC: A Causal Aware Model for Emotional Support Conversation [79.4451588204647]
Existing approaches ignore the emotion causes of the distress.
They focus on the seeker's own mental state rather than the emotional dynamics during interaction between speakers.
We propose a novel framework CauESC, which firstly recognizes the emotion causes of the distress, as well as the emotion effects triggered by the causes.
arXiv Detail & Related papers (2024-01-31T11:30:24Z) - E-CORE: Emotion Correlation Enhanced Empathetic Dialogue Generation [33.57399405783864]
We propose a novel emotion correlation enhanced empathetic dialogue generation framework.
Specifically, a multi-resolution emotion graph is devised to capture context-based emotion interactions.
We then propose an emotion correlation enhanced decoder, with a novel correlation-aware aggregation and soft/hard strategy.
arXiv Detail & Related papers (2023-11-25T12:47:39Z) - Use of a Taxonomy of Empathetic Response Intents to Control and
Interpret Empathy in Neural Chatbots [4.264192013842096]
A recent trend in the domain of open-domain conversational agents is enabling them to converse empathetically to emotional prompts.
Current approaches either follow an end-to-end approach or condition the responses on similar emotion labels to generate empathetic responses.
We propose several rule-based and neural approaches to predict the next response's emotion/intent and generate responses conditioned on these predicted emotions/intents.
arXiv Detail & Related papers (2023-05-17T10:03:03Z) - Empathetic Dialogue Generation via Sensitive Emotion Recognition and
Sensible Knowledge Selection [47.60224978460442]
We propose a Serial and Emotion-Knowledge interaction (SEEK) method for empathetic dialogue generation.
We use a fine-grained encoding strategy which is more sensitive to the emotion dynamics (emotion flow) in the conversations to predict the emotion-intent characteristic of response. Besides, we design a novel framework to model the interaction between knowledge and emotion to generate more sensible response.
arXiv Detail & Related papers (2022-10-21T03:51:18Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
This article proposes a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post.
Experiments on real-world data demonstrate that the proposed method outperforms the state-of-the-art methods in terms of both content coherence and emotion appropriateness.
arXiv Detail & Related papers (2021-06-06T06:26:15Z) - Target Guided Emotion Aware Chat Machine [58.8346820846765]
The consistency of a response to a given post at semantic-level and emotional-level is essential for a dialogue system to deliver human-like interactions.
This article proposes a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post.
arXiv Detail & Related papers (2020-11-15T01:55:37Z) - MIME: MIMicking Emotions for Empathetic Response Generation [82.57304533143756]
Current approaches to empathetic response generation view the set of emotions expressed in the input text as a flat structure.
We argue that empathetic responses often mimic the emotion of the user to a varying degree, depending on its positivity or negativity and content.
arXiv Detail & Related papers (2020-10-04T00:35:47Z) - Knowledge Bridging for Empathetic Dialogue Generation [52.39868458154947]
Lack of external knowledge makes empathetic dialogue systems difficult to perceive implicit emotions and learn emotional interactions from limited dialogue history.
We propose to leverage external knowledge, including commonsense knowledge and emotional lexical knowledge, to explicitly understand and express emotions in empathetic dialogue generation.
arXiv Detail & Related papers (2020-09-21T09:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.