Multicopy quantum state teleportation with application to storage and retrieval of quantum programs
- URL: http://arxiv.org/abs/2409.10393v1
- Date: Mon, 16 Sep 2024 15:30:36 GMT
- Title: Multicopy quantum state teleportation with application to storage and retrieval of quantum programs
- Authors: Frédéric Grosshans, Michał Horodecki, Mio Murao, Tomasz Młynik, Marco Túlio Quintino, Michał Studziński, Satoshi Yoshida,
- Abstract summary: This work considers a teleportation task for Alice and Bob in a scenario where Bob cannot perform corrections.
We show how the multicopy state teleportation protocol can be employed to enhance the success probability of storage and retrieval of quantum programs.
- Score: 1.151731504874944
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work considers a teleportation task for Alice and Bob in a scenario where Bob cannot perform corrections. In particular, we analyse the task of \textit{multicopy state teleportation}, where Alice has $k$ identical copies of an arbitrary unknown $d$-dimensional qudit state $\vert\psi\rangle$ to teleport a single copy of $\vert\psi\rangle$ to Bob using a maximally entangled two-qudit state shared between Alice and Bob without Bob's correction. Alice may perform a joint measurement on her half of the entangled state and the $k$ copies of $\vert\psi\rangle$. We prove that the maximal probability of success for teleporting the exact state $\vert\psi\rangle$ to Bob is $p(d,k)=\frac{k}{d(k-1+d)}$ and present an explicit protocol to attain this performance. Then, by utilising $k$ copies of an arbitrary target state $\vert\psi\rangle$, we show how the multicopy state teleportation protocol can be employed to enhance the success probability of storage and retrieval of quantum programs, which aims to universally retrieve the action of an arbitrary quantum channel that is stored in a state. Our proofs make use of group representation theory methods, which may find applications beyond the problems addressed in this work.
Related papers
- Quantum advantage in a unified scenario and secure detection of
resources [55.2480439325792]
We consider a single task to study different approaches of having quantum advantage.
We show that the optimal success probability in the overall process for a qubit communication might be higher than that for a cbit communication.
arXiv Detail & Related papers (2023-09-22T23:06:20Z) - Teleportation of Post-Selected Quantum States [1.2691047660244337]
We show that it is possible to teleport a state which is also $itpost$-selected.
We also demonstrate pre and post-selected $itport$-based teleportation.
arXiv Detail & Related papers (2023-03-22T11:01:12Z) - Two quantum algorithms for communication between spacelike separated
locations [0.7614628596146599]
We argue that superluminal communication is possible through state discrimination in a higher-dimensional Hilbert space using ancilla qubits.
We propose two quantum algorithms through state discrimantion for communication between two observers Alice and Bob.
arXiv Detail & Related papers (2022-09-16T06:54:22Z) - Proofs of Quantumness from Trapdoor Permutations [9.767030279324038]
Alice and Bob communicate over only classical channels.
Alice can do only classical probabilistic-time computing.
Bob can be constructed from classically-secure (full-domain) trapdoor permutations.
arXiv Detail & Related papers (2022-08-26T01:11:05Z) - Sequential Analysis of a finite number of Coherent states [0.0]
We investigate an advantage for information processing of ordering a set of states over making a global quantum processing with a fixed number of copies of coherent states.
We find that for the symmetric case $|gammarangle,|-gammarangle$ there is no advantage of taking any batch size $l$.
arXiv Detail & Related papers (2022-06-09T16:50:34Z) - Quantum cryptography with classical communication: parallel remote state
preparation for copy-protection, verification, and more [125.99533416395765]
Many cryptographic primitives are two-party protocols, where one party, Bob, has full quantum computational capabilities, and the other party, Alice, is only required to send random BB84 states to Bob.
We show how such protocols can generically be converted to ones where Alice is fully classical, assuming that Bob cannot efficiently solve the LWE problem.
This means that all communication between (classical) Alice and (quantum) Bob is classical, yet they can still make use of cryptographic primitives that would be impossible if both parties were classical.
arXiv Detail & Related papers (2022-01-31T18:56:31Z) - Quantum copy-protection of compute-and-compare programs in the quantum random oracle model [48.94443749859216]
We introduce a quantum copy-protection scheme for a class of evasive functions known as " compute-and-compare programs"
We prove that our scheme achieves non-trivial security against fully malicious adversaries in the quantum random oracle model (QROM)
As a complementary result, we show that the same scheme fulfils a weaker notion of software protection, called "secure software leasing"
arXiv Detail & Related papers (2020-09-29T08:41:53Z) - Quantum Differentially Private Sparse Regression Learning [132.1981461292324]
We devise an efficient quantum differentially private (QDP) Lasso estimator to solve sparse regression tasks.
Last, we exhibit that the QDP Lasso attains a near-optimal utility bound $tildeO(N-2/3)$ with privacy guarantees.
arXiv Detail & Related papers (2020-07-23T10:50:42Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z) - Communication Cost of Quantum Processes [49.281159740373326]
A common scenario in distributed computing involves a client who asks a server to perform a computation on a remote computer.
An important problem is to determine the minimum amount of communication needed to specify the desired computation.
We analyze the total amount of (classical and quantum) communication needed by a server in order to accurately execute a quantum process chosen by a client.
arXiv Detail & Related papers (2020-02-17T08:51:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.