論文の概要: HiFi-CS: Towards Open Vocabulary Visual Grounding For Robotic Grasping Using Vision-Language Models
- arxiv url: http://arxiv.org/abs/2409.10419v1
- Date: Mon, 16 Sep 2024 15:50:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 15:00:57.267068
- Title: HiFi-CS: Towards Open Vocabulary Visual Grounding For Robotic Grasping Using Vision-Language Models
- Title(参考訳): HiFi-CS:視覚言語モデルを用いたロボットグラフプのためのオープンな語彙的視覚接地を目指して
- Authors: Vineet Bhat, Prashanth Krishnamurthy, Ramesh Karri, Farshad Khorrami,
- Abstract要約: 本稿では、画像とテキストの埋め込みを融合させるためのFiLM(Featurewise Linear Modulation)の階層的応用を特徴とするHiFi-CSを紹介する。
ビジュアルグラウンドティングは2D/3D空間のオブジェクトと自然言語入力を関連付け、クローズドとオープンボキャブラリの2つのシナリオで研究されている。
7-DOFロボットアームを用いた実世界RGS実験によるアプローチの有効性を検証し、15台のテーブルトップシーンで90.33%の視覚的接地精度を達成した。
- 参考スコア(独自算出の注目度): 20.412403432289583
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robots interacting with humans through natural language can unlock numerous applications such as Referring Grasp Synthesis (RGS). Given a text query, RGS determines a stable grasp pose to manipulate the referred object in the robot's workspace. RGS comprises two steps: visual grounding and grasp pose estimation. Recent studies leverage powerful Vision-Language Models (VLMs) for visually grounding free-flowing natural language in real-world robotic execution. However, comparisons in complex, cluttered environments with multiple instances of the same object are lacking. This paper introduces HiFi-CS, featuring hierarchical application of Featurewise Linear Modulation (FiLM) to fuse image and text embeddings, enhancing visual grounding for complex attribute rich text queries encountered in robotic grasping. Visual grounding associates an object in 2D/3D space with natural language input and is studied in two scenarios: Closed and Open Vocabulary. HiFi-CS features a lightweight decoder combined with a frozen VLM and outperforms competitive baselines in closed vocabulary settings while being 100x smaller in size. Our model can effectively guide open-set object detectors like GroundedSAM to enhance open-vocabulary performance. We validate our approach through real-world RGS experiments using a 7-DOF robotic arm, achieving 90.33\% visual grounding accuracy in 15 tabletop scenes. We include our codebase in the supplementary material.
- Abstract(参考訳): 自然言語を介して人間と対話するロボットは、Referring Grasp Synthesis (RGS)のような多数のアプリケーションをアンロックすることができる。
テキストクエリが与えられた場合、RGSはロボットのワークスペース内の参照オブジェクトを操作するための安定した握りポーズを決定する。
RGSは2つのステップで構成されている。
近年,視覚言語モデル(VLM)を応用して,実世界におけるロボット実行における自由流れの自然言語を視覚的にグラウンド化する研究が進められている。
しかし、同じオブジェクトの複数のインスタンスと複雑で散らかった環境での比較は不十分である。
本稿では、画像とテキストの埋め込みを融合させるために、FiLM(Featurewise Linear Modulation)の階層的応用を特徴とするHiFi-CSを提案する。
ビジュアルグラウンドティングは2D/3D空間のオブジェクトと自然言語入力を関連付け、クローズドとオープンボキャブラリの2つのシナリオで研究されている。
HiFi-CSは、軽量デコーダと凍結したVLMを組み合わせることで、100倍のサイズのクローズドボキャブラリー設定で競合ベースラインを上回っている。
提案モデルでは,GroundedSAMのようなオープンセットオブジェクト検出器を効果的に誘導し,オープンボキャブラリ性能を向上させる。
7-DOFロボットアームを用いた実世界RGS実験によるアプローチの検証を行い、15台のテーブルトップシーンで90.33\%の視覚的接地精度を実現した。
私たちはコードベースを補足資料に含んでいます。
関連論文リスト
- Learning to Ground VLMs without Forgetting [54.033346088090674]
我々は、既存の画像や言語理解スキルを忘れずに、事前訓練されたビジュアル言語モデルに視覚的接地能力を持たせるフレームワークであるLynXを紹介する。
モデルを効果的に訓練するために、私たちはSCouTと呼ばれる高品質な合成データセットを生成します。
我々はLynXを複数のオブジェクト検出および視覚的グラウンド化データセット上で評価し、オブジェクト検出、ゼロショットローカライゼーション、グラウンドド推論において強い性能を示す。
論文 参考訳(メタデータ) (2024-10-14T13:35:47Z) - Polaris: Open-ended Interactive Robotic Manipulation via Syn2Real Visual Grounding and Large Language Models [53.22792173053473]
我々はPolarisという対話型ロボット操作フレームワークを紹介した。
ポラリスはGPT-4と接地された視覚モデルを利用して知覚と相互作用を統合する。
本稿では,Syn2Real(Synthetic-to-Real)ポーズ推定パイプラインを提案する。
論文 参考訳(メタデータ) (2024-08-15T06:40:38Z) - Towards Open-World Grasping with Large Vision-Language Models [5.317624228510749]
オープンワールドの把握システムは、高レベルの文脈と低レベルの物理幾何学的推論を組み合わせることができるべきである。
本稿では,視覚言語モデルとセグメンテーションとグルーピング合成モデルを組み合わせたオープンワールドグルーピングパイプラインOWGを提案する。
乱雑な屋内シーンデータセットを用いて,オープンエンド言語を基盤としたOWGのロバスト性を示す。
論文 参考訳(メタデータ) (2024-06-26T19:42:08Z) - LLARVA: Vision-Action Instruction Tuning Enhances Robot Learning [50.99807031490589]
LLARVAは,ロボット学習タスク,シナリオ,環境を統一するための,新しい指導指導法で訓練されたモデルである。
我々は,Open X-Embodimentデータセットから8.5Mの画像-視覚的トレースペアを生成し,モデルを事前学習する。
実験によって強い性能が得られ、LLARVAは現代のいくつかのベースラインと比較してよく機能することを示した。
論文 参考訳(メタデータ) (2024-06-17T17:55:29Z) - PIVOT: Iterative Visual Prompting Elicits Actionable Knowledge for VLMs [140.14239499047977]
視覚言語モデル(VLM)は、論理的推論から視覚的理解に至るまで、様々なタスクにわたって印象的な能力を示している。
PIVOT(Prompting with Iterative Visual Optimization)と呼ばれる新しい視覚的プロンプト手法を提案する。
私たちのアプローチは、ロボットのトレーニングデータやさまざまな環境でのナビゲーション、その他の能力なしに、ロボットシステムのゼロショット制御を可能にします。
論文 参考訳(メタデータ) (2024-02-12T18:33:47Z) - Language-guided Robot Grasping: CLIP-based Referring Grasp Synthesis in
Clutter [14.489086924126253]
本研究は, 乱雑な場面において, 自然言語で参照される物体のつかみポーズを予測する, つかみ合成を参照する作業に焦点をあてる。
既存のアプローチでは、参照対象をまずセグメント化し、適切な把握を提案し、自然屋内シーンの複雑さを捉えないプライベートデータセットやシミュレータで評価される。
本稿では,CLIPの視覚的接地機能を利用して,画像とテキストのペアから直接合成を学習する新しいエンド・ツー・エンド・モデル(CROG)を提案する。
論文 参考訳(メタデータ) (2023-11-09T22:55:10Z) - WALL-E: Embodied Robotic WAiter Load Lifting with Large Language Model [92.90127398282209]
本稿では,最新のLarge Language Models(LLM)と既存のビジュアルグラウンドとロボットグルーピングシステムを統合する可能性について検討する。
本稿では,この統合の例としてWALL-E (Embodied Robotic WAiter load lifting with Large Language model)を紹介する。
我々は,このLCMを利用したシステムを物理ロボットに展開し,よりユーザフレンドリなインタフェースで指導誘導型把握タスクを実現する。
論文 参考訳(メタデータ) (2023-08-30T11:35:21Z) - VoxPoser: Composable 3D Value Maps for Robotic Manipulation with
Language Models [38.503337052122234]
大規模言語モデル(LLM)は、ロボット操作のために抽出できる豊富な行動可能な知識を持っていることが示されている。
我々は,オープンな命令セットとオープンなオブジェクトセットが与えられた様々な操作タスクに対して,ロボット軌道を合成することを目指している。
筆者らは,接触に富んだインタラクションを含むシーンのダイナミックスモデルを効率的に学習することで,提案フレームワークがオンライン体験の恩恵を享受できることを実証する。
論文 参考訳(メタデータ) (2023-07-12T07:40:48Z) - Learning 6-DoF Fine-grained Grasp Detection Based on Part Affordance Grounding [42.04502185508723]
本稿では,3次元部分レベルの可読性と把握能力学習を促進するために,言語誘導型SHape grAsPingデータを提案する。
ロボット認知の観点から、我々は2段階のきめ細かいロボット把握フレームワーク(LangPartGPD)を設計する。
我々の手法は、人間とロボットの協調と大規模言語モデル(LLM)の利点を組み合わせたものである。
提案手法は,3次元形状のきめ細かな接地,オブジェクトの空き度推定,および3次元部分認識把握タスクにおいて,競争性能を達成できることを示す。
論文 参考訳(メタデータ) (2023-01-27T07:00:54Z) - Enhancing Interpretability and Interactivity in Robot Manipulation: A
Neurosymbolic Approach [0.0]
本稿では,言語誘導型視覚推論とロボット操作を結合したニューロシンボリックアーキテクチャを提案する。
非熟練の人間ユーザは、制約のない自然言語を用いてロボットに刺激を与え、参照表現(REF)、質問(VQA)、把握動作指示を提供する。
シミュレーション環境では,3次元視覚と言語によるテーブルトップシーンの合成データセットを作成し,我々のアプローチを訓練し,合成シーンと実世界のシーンの両方で広範な評価を行う。
論文 参考訳(メタデータ) (2022-10-03T12:21:45Z) - INVIGORATE: Interactive Visual Grounding and Grasping in Clutter [56.00554240240515]
INVIGORATEは、自然言語で人間と対話し、特定の物体をクラッタで把握するロボットシステムである。
我々は、物体検出、視覚的接地、質問生成、OBR検出と把握のために、別々のニューラルネットワークを訓練する。
我々は、学習したニューラルネットワークモジュールを統合する、部分的に観測可能なマルコフ決定プロセス(POMDP)を構築します。
論文 参考訳(メタデータ) (2021-08-25T07:35:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。