Deep-Wide Learning Assistance for Insect Pest Classification
- URL: http://arxiv.org/abs/2409.10445v1
- Date: Mon, 16 Sep 2024 16:29:41 GMT
- Title: Deep-Wide Learning Assistance for Insect Pest Classification
- Authors: Toan Nguyen, Huy Nguyen, Huy Ung, Hieu Ung, Binh Nguyen,
- Abstract summary: We present DeWi, novel learning assistance for insect pest classification.
With a one-stage and alternating training strategy, DeWi simultaneously improves several Convolutional Neural Networks.
Experimental results show that DeWi achieves the highest performances on two insect pest classification benchmarks.
- Score: 1.9912919001438378
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate insect pest recognition plays a critical role in agriculture. It is a challenging problem due to the intricate characteristics of insects. In this paper, we present DeWi, novel learning assistance for insect pest classification. With a one-stage and alternating training strategy, DeWi simultaneously improves several Convolutional Neural Networks in two perspectives: discrimination (by optimizing a triplet margin loss in a supervised training manner) and generalization (via data augmentation). From that, DeWi can learn discriminative and in-depth features of insect pests (deep) yet still generalize well to a large number of insect categories (wide). Experimental results show that DeWi achieves the highest performances on two insect pest classification benchmarks (76.44\% accuracy on the IP102 dataset and 99.79\% accuracy on the D0 dataset, respectively). In addition, extensive evaluations and ablation studies are conducted to thoroughly investigate our DeWi and demonstrate its superiority. Our source code is available at https://github.com/toannguyen1904/DeWi.
Related papers
- Artificial Immune System of Secure Face Recognition Against Adversarial Attacks [67.31542713498627]
optimisation is required for insect production to realise its full potential.
This can be by targeted improvement of traits of interest through selective breeding.
This review combines knowledge from diverse disciplines, bridging the gap between animal breeding, quantitative genetics, evolutionary biology, and entomology.
arXiv Detail & Related papers (2024-06-26T07:50:58Z) - Unleashing the Power of Transfer Learning Model for Sophisticated Insect Detection: Revolutionizing Insect Classification [0.520707246175575]
This study uses different models like MobileNetV2, ResNet152V2, Xecption, Custom CNN.
A Convolutional Neural Network (CNN) based on the ResNet152V2 architecture is constructed and evaluated in this work.
The results highlight its potential for real-world applications in insect classification and entomology studies.
arXiv Detail & Related papers (2024-06-11T20:52:42Z) - Insect-Foundation: A Foundation Model and Large-scale 1M Dataset for Visual Insect Understanding [15.383106771910274]
Current machine vision model requires a large volume of data to achieve high performance.
We introduce a novel "Insect-1M" dataset, a game-changing resource poised to revolutionize insect-related foundation model training.
Covering a vast spectrum of insect species, our dataset, including 1 million images with dense identification labels of taxonomy hierarchy and insect descriptions, offers a panoramic view of entomology.
arXiv Detail & Related papers (2023-11-26T06:17:29Z) - Deep learning powered real-time identification of insects using citizen
science data [17.13608307250744]
InsectNet can identify invasive species, provide fine-grained insect species identification, and work effectively in challenging backgrounds.
It can also abstain from making predictions when uncertain, facilitating seamless human intervention and making it a practical and trustworthy tool.
arXiv Detail & Related papers (2023-06-04T23:56:53Z) - RoS-KD: A Robust Stochastic Knowledge Distillation Approach for Noisy
Medical Imaging [67.02500668641831]
Deep learning models trained on noisy datasets are sensitive to the noise type and lead to less generalization on unseen samples.
We propose a Robust Knowledge Distillation (RoS-KD) framework which mimics the notion of learning a topic from multiple sources to ensure deterrence in learning noisy information.
RoS-KD learns a smooth, well-informed, and robust student manifold by distilling knowledge from multiple teachers trained on overlapping subsets of training data.
arXiv Detail & Related papers (2022-10-15T22:32:20Z) - High performing ensemble of convolutional neural networks for insect
pest image detection [124.23179560022761]
Pest infestation is a major cause of crop damage and lost revenues worldwide.
We generate ensembles of CNNs based on different topologies.
Two new Adam algorithms for deep network optimization are proposed.
arXiv Detail & Related papers (2021-08-28T00:49:11Z) - An Efficient Insect Pest Classification Using Multiple Convolutional
Neural Network Based Models [0.3222802562733786]
Insect pest classification is a difficult task because of various kinds, scales, shapes, complex backgrounds in the field, and high appearance similarity among insect species.
We present different convolutional neural network-based models in this work, including attention, feature pyramid, and fine-grained models.
The experimental results show that combining these convolutional neural network-based models can better perform than the state-of-the-art methods on these two datasets.
arXiv Detail & Related papers (2021-07-26T12:53:28Z) - Learning and Certification under Instance-targeted Poisoning [49.55596073963654]
We study PAC learnability and certification under instance-targeted poisoning attacks.
We show that when the budget of the adversary scales sublinearly with the sample complexity, PAC learnability and certification are achievable.
We empirically study the robustness of K nearest neighbour, logistic regression, multi-layer perceptron, and convolutional neural network on real data sets.
arXiv Detail & Related papers (2021-05-18T17:48:15Z) - Curse or Redemption? How Data Heterogeneity Affects the Robustness of
Federated Learning [51.15273664903583]
Data heterogeneity has been identified as one of the key features in federated learning but often overlooked in the lens of robustness to adversarial attacks.
This paper focuses on characterizing and understanding its impact on backdooring attacks in federated learning through comprehensive experiments using synthetic and the LEAF benchmarks.
arXiv Detail & Related papers (2021-02-01T06:06:21Z) - One-Shot Learning with Triplet Loss for Vegetation Classification Tasks [45.82374977939355]
Triplet loss function is one of the options that can significantly improve the accuracy of the One-shot Learning tasks.
Starting from 2015, many projects use Siamese networks and this kind of loss for face recognition and object classification.
arXiv Detail & Related papers (2020-12-14T10:44:22Z) - Weakly Supervised Learning Guided by Activation Mapping Applied to a
Novel Citrus Pest Benchmark [6.239768930024569]
Integrated Pest Management is the most widely used process to prevent and mitigate the damages caused by pests and diseases in citrus crops.
We design a weakly supervised learning process guided by saliency maps to automatically select regions of interest in the images.
Experiments conducted on two large datasets demonstrate that our results are very promising for the problem of pest and disease classification in the agriculture field.
arXiv Detail & Related papers (2020-04-22T01:26:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.