Unleashing the Power of Transfer Learning Model for Sophisticated Insect Detection: Revolutionizing Insect Classification
- URL: http://arxiv.org/abs/2406.07716v1
- Date: Tue, 11 Jun 2024 20:52:42 GMT
- Title: Unleashing the Power of Transfer Learning Model for Sophisticated Insect Detection: Revolutionizing Insect Classification
- Authors: Md. Mahmudul Hasan, SM Shaqib, Ms. Sharmin Akter, Rabiul Alam, Afraz Ul Haque, Shahrun akter khushbu,
- Abstract summary: This study uses different models like MobileNetV2, ResNet152V2, Xecption, Custom CNN.
A Convolutional Neural Network (CNN) based on the ResNet152V2 architecture is constructed and evaluated in this work.
The results highlight its potential for real-world applications in insect classification and entomology studies.
- Score: 0.520707246175575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The purpose of the Insect Detection System for Crop and Plant Health is to keep an eye out for and identify insect infestations in farming areas. By utilizing cutting-edge technology like computer vision and machine learning, the system seeks to identify hazardous insects early and accurately. This would enable prompt response to save crops and maintain optimal plant health. The Method of this study includes Data Acquisition, Preprocessing, Data splitting, Model Implementation and Model evaluation. Different models like MobileNetV2, ResNet152V2, Xecption, Custom CNN was used in this study. In order to categorize insect photos, a Convolutional Neural Network (CNN) based on the ResNet152V2 architecture is constructed and evaluated in this work. Achieving 99% training accuracy and 97% testing accuracy, ResNet152V2 demonstrates superior performance among four implemented models. The results highlight its potential for real-world applications in insect classification and entomology studies, emphasizing efficiency and accuracy. To ensure food security and sustain agricultural output globally, finding insects is crucial. Cutting-edge technology, such as ResNet152V2 models, greatly influence automating and improving the accuracy of insect identification. Efficient insect detection not only minimizes crop losses but also enhances agricultural productivity, contributing to sustainable food production. This underscores the pivotal role of technology in addressing challenges related to global food security.
Related papers
- Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
We present a framework to better identify food security hotspots using a combination of remote sensing, deep learning, crop yield modeling, and causal modeling of the food distribution system.
We focus our analysis on the wheat breadbasket of northern India, which supplies a large percentage of the world's population.
arXiv Detail & Related papers (2024-11-07T22:29:05Z) - Deep-Wide Learning Assistance for Insect Pest Classification [1.9912919001438378]
We present DeWi, novel learning assistance for insect pest classification.
With a one-stage and alternating training strategy, DeWi simultaneously improves several Convolutional Neural Networks.
Experimental results show that DeWi achieves the highest performances on two insect pest classification benchmarks.
arXiv Detail & Related papers (2024-09-16T16:29:41Z) - Artificial Immune System of Secure Face Recognition Against Adversarial Attacks [67.31542713498627]
optimisation is required for insect production to realise its full potential.
This can be by targeted improvement of traits of interest through selective breeding.
This review combines knowledge from diverse disciplines, bridging the gap between animal breeding, quantitative genetics, evolutionary biology, and entomology.
arXiv Detail & Related papers (2024-06-26T07:50:58Z) - Insect Identification in the Wild: The AMI Dataset [35.41544843896443]
Insects represent half of all global biodiversity, yet many of the world's insects are disappearing.
Despite this crisis, data on insect diversity and abundance remain woefully inadequate.
We provide the first large-scale machine learning benchmarks for fine-grained insect recognition.
arXiv Detail & Related papers (2024-06-18T09:57:02Z) - Insect-Foundation: A Foundation Model and Large-scale 1M Dataset for Visual Insect Understanding [15.383106771910274]
Current machine vision model requires a large volume of data to achieve high performance.
We introduce a novel "Insect-1M" dataset, a game-changing resource poised to revolutionize insect-related foundation model training.
Covering a vast spectrum of insect species, our dataset, including 1 million images with dense identification labels of taxonomy hierarchy and insect descriptions, offers a panoramic view of entomology.
arXiv Detail & Related papers (2023-11-26T06:17:29Z) - Deep learning powered real-time identification of insects using citizen
science data [17.13608307250744]
InsectNet can identify invasive species, provide fine-grained insect species identification, and work effectively in challenging backgrounds.
It can also abstain from making predictions when uncertain, facilitating seamless human intervention and making it a practical and trustworthy tool.
arXiv Detail & Related papers (2023-06-04T23:56:53Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
We review how AI techniques can transform agrifood systems and contribute to the modern agrifood industry.
We present a progress review of AI methods in agrifood systems, specifically in agriculture, animal husbandry, and fishery.
We highlight potential challenges and promising research opportunities for transforming modern agrifood systems with AI.
arXiv Detail & Related papers (2023-05-03T05:16:54Z) - Spatial Monitoring and Insect Behavioural Analysis Using Computer Vision
for Precision Pollination [6.2997667081978825]
Insects are the most important global pollinator of crops and play a key role in maintaining the sustainability of natural ecosystems.
Current computer vision facilitated insect tracking in complex outdoor environments is restricted in spatial coverage.
This article introduces a novel system to facilitate markerless data capture for insect counting, insect motion tracking, behaviour analysis and pollination prediction.
arXiv Detail & Related papers (2022-05-10T05:11:28Z) - An Efficient Insect Pest Classification Using Multiple Convolutional
Neural Network Based Models [0.3222802562733786]
Insect pest classification is a difficult task because of various kinds, scales, shapes, complex backgrounds in the field, and high appearance similarity among insect species.
We present different convolutional neural network-based models in this work, including attention, feature pyramid, and fine-grained models.
The experimental results show that combining these convolutional neural network-based models can better perform than the state-of-the-art methods on these two datasets.
arXiv Detail & Related papers (2021-07-26T12:53:28Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - One-Shot Learning with Triplet Loss for Vegetation Classification Tasks [45.82374977939355]
Triplet loss function is one of the options that can significantly improve the accuracy of the One-shot Learning tasks.
Starting from 2015, many projects use Siamese networks and this kind of loss for face recognition and object classification.
arXiv Detail & Related papers (2020-12-14T10:44:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.