論文の概要: MusicLIME: Explainable Multimodal Music Understanding
- arxiv url: http://arxiv.org/abs/2409.10496v1
- Date: Mon, 16 Sep 2024 17:28:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 14:38:40.460862
- Title: MusicLIME: Explainable Multimodal Music Understanding
- Title(参考訳): MusicLIME: 説明可能なマルチモーダル音楽理解
- Authors: Theodoros Sotirou, Vassilis Lyberatos, Orfeas Menis Mastromichalakis, Giorgos Stamou,
- Abstract要約: マルチモーダル音楽モデル用に設計されたモデルに依存しない特徴重要度説明法であるMusicLIMEを紹介する。
MusicLIMEは、音声と歌詞の機能がどのように相互作用し、予測に寄与するかを明らかにし、モデルの意思決定の全体像を提供する。
- 参考スコア(独自算出の注目度): 2.1392064955842023
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal models are critical for music understanding tasks, as they capture the complex interplay between audio and lyrics. However, as these models become more prevalent, the need for explainability grows-understanding how these systems make decisions is vital for ensuring fairness, reducing bias, and fostering trust. In this paper, we introduce MusicLIME, a model-agnostic feature importance explanation method designed for multimodal music models. Unlike traditional unimodal methods, which analyze each modality separately without considering the interaction between them, often leading to incomplete or misleading explanations, MusicLIME reveals how audio and lyrical features interact and contribute to predictions, providing a holistic view of the model's decision-making. Additionally, we enhance local explanations by aggregating them into global explanations, giving users a broader perspective of model behavior. Through this work, we contribute to improving the interpretability of multimodal music models, empowering users to make informed choices, and fostering more equitable, fair, and transparent music understanding systems.
- Abstract(参考訳): マルチモーダルモデルは、音声と歌詞の間の複雑な相互作用を捉えているため、音楽理解タスクには不可欠である。
しかしながら、これらのモデルがより普及するにつれて、これらのシステムが公正性を確保し、バイアスを減らし、信頼を育むために、どのように意思決定するかを考慮し、説明可能性の必要性が高まっます。
本稿では,マルチモーダル音楽モデル用に設計されたモデルに依存しない特徴重要度説明手法であるMusicLIMEを紹介する。
相互の相互作用を考慮せずにそれぞれのモダリティを別々に分析し、しばしば不完全あるいは誤解を招くような説明を導く伝統的なユニモーダル法とは異なり、MusicLIMEは、オーディオとリリック機能がどのように相互作用し、予測に寄与するかを明らかにし、モデルの決定の全体像を提供する。
さらに、局所的な説明をグローバルな説明に集約することで強化し、モデル行動のより広い視点を提供する。
本研究は,マルチモーダル音楽モデルの解釈可能性の向上,ユーザによる情報提供の促進,より公平で公平で透明な音楽理解システムの育成に寄与する。
関連論文リスト
- Multi-Modal interpretable automatic video captioning [1.9874264019909988]
マルチモーダル・コントラッシブ・ロスを訓練した新しいビデオキャプション手法を提案する。
我々のアプローチは、これらのモダリティ間の依存関係を捉えるために設計されており、その結果、より正確で、従って関連するキャプションとなる。
論文 参考訳(メタデータ) (2024-11-11T11:12:23Z) - Foundation Models for Music: A Survey [77.77088584651268]
ファンデーションモデル(FM)は音楽を含む様々な分野に大きな影響を与えている。
本総説では,音楽の事前学習モデルと基礎モデルについて概観する。
論文 参考訳(メタデータ) (2024-08-26T15:13:14Z) - DeepInteraction++: Multi-Modality Interaction for Autonomous Driving [80.8837864849534]
我々は,モダリティごとの個別表現を学習し,維持することのできる,新しいモダリティインタラクション戦略を導入する。
DeepInteraction++はマルチモーダルなインタラクション・フレームワークであり、マルチモーダルな表現型インタラクション・エンコーダとマルチモーダルな予測型インタラクション・デコーダを特徴とする。
実験では,3次元物体検出とエンドツーエンドの自律走行の両方において,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2024-08-09T14:04:21Z) - MuChoMusic: Evaluating Music Understanding in Multimodal Audio-Language Models [11.834712543531756]
MuChoMusicは、オーディオに焦点を当てたマルチモーダル言語モデルにおける音楽理解を評価するためのベンチマークである。
これには1,187の質問が含まれており、いずれも人間のアノテータによって検証され、2つのパブリックな音楽データセットからソースされた644曲の楽曲が収録されている。
我々は5つのオープンソースモデルを評価し、言語モダリティの過度な信頼性を含むいくつかの落とし穴を識別する。
論文 参考訳(メタデータ) (2024-08-02T15:34:05Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
本稿では,大規模視覚言語モデルの内部メカニズムの理解を目的とした対話型アプリケーションを提案する。
このインタフェースは, 画像パッチの解釈可能性を高めるために設計されており, 応答の生成に有効である。
本稿では,一般的な大規模マルチモーダルモデルであるLLaVAにおける障害機構の理解に,アプリケーションがどのように役立つかのケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-03T23:57:34Z) - Diffexplainer: Towards Cross-modal Global Explanations with Diffusion Models [51.21351775178525]
DiffExplainerは、言語ビジョンモデルを活用することで、マルチモーダルなグローバルな説明可能性を実現する新しいフレームワークである。
最適化されたテキストプロンプトに条件付けされた拡散モデルを使用し、クラス出力を最大化する画像を合成する。
生成した視覚的記述の分析により、バイアスと突発的特徴の自動識別が可能になる。
論文 参考訳(メタデータ) (2024-04-03T10:11:22Z) - Delving into Multi-modal Multi-task Foundation Models for Road Scene Understanding: From Learning Paradigm Perspectives [56.2139730920855]
本稿では,道路シーンに特化して設計されたMM-VUFMの系統解析について述べる。
本研究の目的は,タスク特化モデル,統合マルチモーダルモデル,統合マルチタスクモデル,基礎モデル推進技術など,共通プラクティスの包括的概要を提供することである。
我々は、クローズドループ駆動システム、解釈可能性、エンボディドドライブエージェント、世界モデルなど、重要な課題と今後のトレンドに関する洞察を提供する。
論文 参考訳(メタデータ) (2024-02-05T12:47:09Z) - MultiViz: An Analysis Benchmark for Visualizing and Understanding
Multimodal Models [103.9987158554515]
MultiVizは、解釈可能性の問題を4段階に足場化することで、マルチモーダルモデルの振る舞いを分析する手法である。
MultiVizの相補的な段階は、モデル予測をシミュレートし、機能に解釈可能な概念を割り当て、モデル誤分類のエラー解析を行い、エラー解析からモデルデバッグへの洞察を利用することを可能にする。
論文 参考訳(メタデータ) (2022-06-30T18:42:06Z) - M2Lens: Visualizing and Explaining Multimodal Models for Sentiment
Analysis [28.958168542624062]
感情分析のためのマルチモーダルモデルの可視化と説明を行う対話型視覚分析システムM2Lensを提案する。
M2Lensは、グローバル、サブセット、および局所レベルでのモーダル内およびモーダル間相互作用の説明を提供する。
論文 参考訳(メタデータ) (2021-07-17T15:54:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。