Harnessing Artificial Intelligence for Wildlife Conservation
- URL: http://arxiv.org/abs/2409.10523v1
- Date: Fri, 30 Aug 2024 09:13:31 GMT
- Title: Harnessing Artificial Intelligence for Wildlife Conservation
- Authors: Paul Fergus, Carl Chalmers, Steve Longmore, Serge Wich,
- Abstract summary: Conservation AI detects and classifies animals, humans, and poaching-related objects using visual spectrum and thermal infrared cameras.
The platform processes this data with convolutional neural networks (CNNs) and Transformer architectures to monitor species.
Case studies from Europe, North America, Africa, and Southeast Asia highlight the platform's success in species identification, biodiversity monitoring, and poaching prevention.
- Score: 0.0937465283958018
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid decline in global biodiversity demands innovative conservation strategies. This paper examines the use of artificial intelligence (AI) in wildlife conservation, focusing on the Conservation AI platform. Leveraging machine learning and computer vision, Conservation AI detects and classifies animals, humans, and poaching-related objects using visual spectrum and thermal infrared cameras. The platform processes this data with convolutional neural networks (CNNs) and Transformer architectures to monitor species, including those which are critically endangered. Real-time detection provides the immediate responses required for time-critical situations (e.g. poaching), while non-real-time analysis supports long-term wildlife monitoring and habitat health assessment. Case studies from Europe, North America, Africa, and Southeast Asia highlight the platform's success in species identification, biodiversity monitoring, and poaching prevention. The paper also discusses challenges related to data quality, model accuracy, and logistical constraints, while outlining future directions involving technological advancements, expansion into new geographical regions, and deeper collaboration with local communities and policymakers. Conservation AI represents a significant step forward in addressing the urgent challenges of wildlife conservation, offering a scalable and adaptable solution that can be implemented globally.
Related papers
- Systematic Literature Review of Vision-Based Approaches to Outdoor Livestock Monitoring with Lessons from Wildlife Studies [4.665771068009825]
We focus on large terrestrial mammals, such as cattle, horses, deer, goats, sheep, koalas, giraffes, and elephants.
We discuss in detail the applicability of current vision-based methods to PLF contexts and promising directions for future research.
arXiv Detail & Related papers (2024-10-07T13:53:17Z) - Insect Identification in the Wild: The AMI Dataset [35.41544843896443]
Insects represent half of all global biodiversity, yet many of the world's insects are disappearing.
Despite this crisis, data on insect diversity and abundance remain woefully inadequate.
We provide the first large-scale machine learning benchmarks for fine-grained insect recognition.
arXiv Detail & Related papers (2024-06-18T09:57:02Z) - Citizen Science and Machine Learning for Research and Nature
Conservation: The Case of Eurasian Lynx, Free-ranging Rodents and Insects [3.9608713973182144]
We will discuss considerations related to nature research and conservation as well as opportunities for the use of Citizen Science and Machine Learning.
The panel will discuss opportunities for the use of Citizen Science and Machine Learning to expedite the process of data preparation, labelling and analysis.
arXiv Detail & Related papers (2024-03-05T12:13:27Z) - Computer Vision for Primate Behavior Analysis in the Wild [61.08941894580172]
Video-based behavioral monitoring has great potential for transforming how we study animal cognition and behavior.
There is still a fairly large gap between the exciting prospects and what can actually be achieved in practice today.
arXiv Detail & Related papers (2024-01-29T18:59:56Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
We present SatBird, a satellite dataset of locations in the USA with labels derived from presence-absence observation data from the citizen science database eBird.
We also provide a dataset in Kenya representing low-data regimes.
We benchmark a set of baselines on our dataset, including SOTA models for remote sensing tasks.
arXiv Detail & Related papers (2023-11-02T02:00:27Z) - Representation Engineering: A Top-Down Approach to AI Transparency [132.0398250233924]
We identify and characterize the emerging area of representation engineering (RepE)
RepE places population-level representations, rather than neurons or circuits, at the center of analysis.
We showcase how these methods can provide traction on a wide range of safety-relevant problems.
arXiv Detail & Related papers (2023-10-02T17:59:07Z) - Elephants and Algorithms: A Review of the Current and Future Role of AI
in Elephant Monitoring [47.24825031148412]
Artificial intelligence (AI) and machine learning (ML) present revolutionary opportunities to enhance our understanding of animal behavior and conservation strategies.
Using elephants, a crucial species in Africa's protected areas, as our focal point, we delve into the role of AI and ML in their conservation.
New AI and ML techniques offer solutions to streamline this process, helping us extract vital information that might otherwise be overlooked.
arXiv Detail & Related papers (2023-06-23T22:35:51Z) - Seeing biodiversity: perspectives in machine learning for wildlife
conservation [49.15793025634011]
We argue that machine learning can meet this analytic challenge to enhance our understanding, monitoring capacity, and conservation of wildlife species.
In essence, by combining new machine learning approaches with ecological domain knowledge, animal ecologists can capitalize on the abundance of data generated by modern sensor technologies.
arXiv Detail & Related papers (2021-10-25T13:40:36Z) - Cetacean Translation Initiative: a roadmap to deciphering the
communication of sperm whales [97.41394631426678]
Recent research showed the promise of machine learning tools for analyzing acoustic communication in nonhuman species.
We outline the key elements required for the collection and processing of massive bioacoustic data of sperm whales.
The technological capabilities developed are likely to yield cross-applications and advancements in broader communities investigating non-human communication and animal behavioral research.
arXiv Detail & Related papers (2021-04-17T18:39:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.