Artificial Intelligence for Sustainable Urban Biodiversity: A Framework for Monitoring and Conservation
- URL: http://arxiv.org/abs/2501.14766v1
- Date: Sat, 28 Dec 2024 03:18:56 GMT
- Title: Artificial Intelligence for Sustainable Urban Biodiversity: A Framework for Monitoring and Conservation
- Authors: Yasmin Rahmati,
- Abstract summary: The rapid expansion of urban areas challenges biodiversity conservation, requiring innovative ecosystem management.
This study explores the role of Artificial Intelligence (AI) in urban biodiversity conservation, its applications, and a framework for implementation.
- Score: 0.0
- License:
- Abstract: The rapid expansion of urban areas challenges biodiversity conservation, requiring innovative ecosystem management. This study explores the role of Artificial Intelligence (AI) in urban biodiversity conservation, its applications, and a framework for implementation. Key findings show that: (a) AI enhances species detection and monitoring, achieving over 90% accuracy in urban wildlife tracking and invasive species management; (b) integrating data from remote sensing, acoustic monitoring, and citizen science enables large-scale ecosystem analysis; and (c) AI decision tools improve conservation planning and resource allocation, increasing prediction accuracy by up to 18.5% compared to traditional methods. The research presents an AI-Driven Framework for Urban Biodiversity Management, highlighting AI's impact on monitoring, conservation strategies, and ecological outcomes. Implementation strategies include: (a) standardizing data collection and model validation, (b) ensuring equitable AI access across urban contexts, and (c) developing ethical guidelines for biodiversity monitoring. The study concludes that integrating AI in urban biodiversity conservation requires balancing innovation with ecological wisdom and addressing data quality, socioeconomic disparities, and ethical concerns.
Related papers
- AI-Driven Real-Time Monitoring of Ground-Nesting Birds: A Case Study on Curlew Detection Using YOLOv10 [0.07255608805275862]
This study presents an AI-driven approach for real-time species detection, focusing on the curlew (Numenius arquata)
A custom-trained YOLOv10 model was developed to detect and classify curlews and their chicks using 3/4G-enabled cameras linked to the Conservation AI platform.
Across 11 nesting sites in Wales, the model achieved high performance, with a sensitivity of 90.56%, specificity of 100%, and F1-score of 95.05% for curlew detections.
arXiv Detail & Related papers (2024-11-22T10:36:29Z) - Harnessing Artificial Intelligence for Wildlife Conservation [0.0937465283958018]
Conservation AI detects and classifies animals, humans, and poaching-related objects using visual spectrum and thermal infrared cameras.
The platform processes this data with convolutional neural networks (CNNs) and Transformer architectures to monitor species.
Case studies from Europe, North America, Africa, and Southeast Asia highlight the platform's success in species identification, biodiversity monitoring, and poaching prevention.
arXiv Detail & Related papers (2024-08-30T09:13:31Z) - Artificial Intelligence in Sustainable Vertical Farming [0.0]
The paper provides a comprehensive exploration of the role of AI in sustainable vertical farming.
The review synthesizes the current state of AI applications, encompassing machine learning, computer vision, the Internet of Things (IoT), and robotics.
The implications extend beyond efficiency gains, considering economic viability, reduced environmental impact, and increased food security.
arXiv Detail & Related papers (2023-11-17T22:15:41Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
We present SatBird, a satellite dataset of locations in the USA with labels derived from presence-absence observation data from the citizen science database eBird.
We also provide a dataset in Kenya representing low-data regimes.
We benchmark a set of baselines on our dataset, including SOTA models for remote sensing tasks.
arXiv Detail & Related papers (2023-11-02T02:00:27Z) - Predictable Artificial Intelligence [77.1127726638209]
This paper introduces the ideas and challenges of Predictable AI.
It explores the ways in which we can anticipate key validity indicators of present and future AI ecosystems.
We argue that achieving predictability is crucial for fostering trust, liability, control, alignment and safety of AI ecosystems.
arXiv Detail & Related papers (2023-10-09T21:36:21Z) - Elephants and Algorithms: A Review of the Current and Future Role of AI
in Elephant Monitoring [47.24825031148412]
Artificial intelligence (AI) and machine learning (ML) present revolutionary opportunities to enhance our understanding of animal behavior and conservation strategies.
Using elephants, a crucial species in Africa's protected areas, as our focal point, we delve into the role of AI and ML in their conservation.
New AI and ML techniques offer solutions to streamline this process, helping us extract vital information that might otherwise be overlooked.
arXiv Detail & Related papers (2023-06-23T22:35:51Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - An Empirical Analysis of AI Contributions to Sustainable Cities (SDG11) [4.56877715768796]
The application of AI has far-reaching implications for the 17 Sustainable Development Goals.
We analyze the contribution of AI to support the progress of SDG 11 (Sustainable Cities and Communities)
Our analysis revealed that AI systems have indeed contributed to advancing sustainable cities in several ways, but many projects are still working for citizens and not with them.
arXiv Detail & Related papers (2022-02-06T22:30:23Z) - Seeing biodiversity: perspectives in machine learning for wildlife
conservation [49.15793025634011]
We argue that machine learning can meet this analytic challenge to enhance our understanding, monitoring capacity, and conservation of wildlife species.
In essence, by combining new machine learning approaches with ecological domain knowledge, animal ecologists can capitalize on the abundance of data generated by modern sensor technologies.
arXiv Detail & Related papers (2021-10-25T13:40:36Z) - Leveraging traditional ecological knowledge in ecosystem restoration
projects utilizing machine learning [77.34726150561087]
Community engagement throughout the stages of ecosystem restoration projects could contribute to improved community well-being.
We suggest that adaptive and scalable practices could incentivize interdisciplinary collaboration during all stages of ecosystemic ML restoration projects.
arXiv Detail & Related papers (2020-06-22T16:17:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.