論文の概要: Fairness in Survival Analysis with Distributionally Robust Optimization
- arxiv url: http://arxiv.org/abs/2409.10538v1
- Date: Sat, 31 Aug 2024 15:03:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-22 21:22:31.466333
- Title: Fairness in Survival Analysis with Distributionally Robust Optimization
- Title(参考訳): 分布ロバスト最適化を用いた生存分析の公正性
- Authors: Shu Hu, George H. Chen,
- Abstract要約: 本稿では,全てのサブ集団における最悪のエラーを最小限に抑えるため,生存分析モデルにおける公平性向上のための一般的なアプローチを提案する。
このアプローチは、既存の生存分析モデルの多くを、公平性を同時に促進するモデルに変換するために使用することができる。
- 参考スコア(独自算出の注目度): 13.159777131162965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a general approach for encouraging fairness in survival analysis models based on minimizing a worst-case error across all subpopulations that occur with at least a user-specified probability. This approach can be used to convert many existing survival analysis models into ones that simultaneously encourage fairness, without requiring the user to specify which attributes or features to treat as sensitive in the training loss function. From a technical standpoint, our approach applies recent developments of distributionally robust optimization (DRO) to survival analysis. The complication is that existing DRO theory uses a training loss function that decomposes across contributions of individual data points, i.e., any term that shows up in the loss function depends only on a single training point. This decomposition does not hold for commonly used survival loss functions, including for the Cox proportional hazards model, its deep neural network variants, and many other recently developed models that use loss functions involving ranking or similarity score calculations. We address this technical hurdle using a sample splitting strategy. We demonstrate our sample splitting DRO approach by using it to create fair versions of a diverse set of existing survival analysis models including the Cox model (and its deep variant DeepSurv), the discrete-time model DeepHit, and the neural ODE model SODEN. We also establish a finite-sample theoretical guarantee to show what our sample splitting DRO loss converges to. For the Cox model, we further derive an exact DRO approach that does not use sample splitting. For all the models that we convert into DRO variants, we show that the DRO variants often score better on recently established fairness metrics (without incurring a significant drop in accuracy) compared to existing survival analysis fairness regularization techniques.
- Abstract(参考訳): 我々は,少なくともユーザ特定確率で発生する全てのサブポピュレーションにおける最悪のエラーを最小限に抑え,生存分析モデルにおける公平性を奨励するための一般的なアプローチを提案する。
このアプローチは、既存の生存分析モデルの多くを、トレーニング損失関数に敏感に扱う属性や特徴を指定することなく、公正性を同時に促進するモデルに変換するために使用することができる。
技術的観点から,本手法は分散ロバスト最適化(DRO)の最近の発展を生存分析に適用する。
複雑さは、既存のDRO理論では、個々のデータポイントの寄与を分解する訓練損失関数を用いており、損失関数に現れる用語は1つのトレーニングポイントにのみ依存するということである。
この分解は、Cox比例ハザードモデル、ディープニューラルネットワークの変種、最近開発されたランキングや類似度スコア計算を含む損失関数を使用するモデルなど、一般的に使われている生存損失関数には適用されない。
この技術的ハードルに,サンプル分割戦略を用いて対処する。
我々は、この手法を用いて、Coxモデル(および深部変種DeepSurv)、離散時間モデルDeepHit、ニューラルODEモデルSODENを含む、様々な生存分析モデルの公正バージョンを作成することで、サンプル分割DROアプローチを実証した。
また、サンプル分割DRO損失の収束を示すための有限サンプル理論的保証を確立する。
Cox モデルに対しては、サンプル分割を使用しない正確な DRO アプローチも導出する。
私たちがDRO変種に変換するすべてのモデルに対して、DRO変種は、既存の生存分析公正化手法と比較して、(精度の大幅な低下を伴わない)最近確立された公正度指標において、より良いスコアを得られることが示される。
関連論文リスト
- Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - Variational Deep Survival Machines: Survival Regression with Censored Outcomes [11.82370259688716]
サバイバル・レグレッション(Survival regression)とは、ある出来事がいつ起こるか、通常は死か失敗かを予測することを目的としている。
本稿では,生存データをクラスタリングし,原始分布を組み合わせることで生存時間を予測できる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-24T02:16:00Z) - Distributionally Robust Multiclass Classification and Applications in
Deep Image Classifiers [9.979945269265627]
マルチクラスロジスティック回帰(MLR)のための分布ロバスト最適化(DRO)の定式化を開発する。
本研究では,新しいランダムトレーニング手法を採用することにより,試験誤差率を最大83.5%,損失を最大91.3%削減することを示した。
論文 参考訳(メタデータ) (2022-10-15T05:09:28Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Distributionally Robust Multiclass Classification and Applications in
Deep Image Classifiers [3.179831861897336]
マルチクラスロジスティック回帰(MLR)のための分布ロバスト最適化(DRO)の定式化を開発する。
本研究では,新しいランダムトレーニング手法を採用することにより,試験誤差率を最大83.5%,損失を最大91.3%削減することを示した。
論文 参考訳(メタデータ) (2021-09-27T02:58:19Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
我々は、最小限の統計量という情報理論の概念を用いて、ロバストで刺激的な表現を定義し、分析する。
入力分布のバイアスしか持たない場合でも、モデルはトレーニングデータから急激な特徴を拾い上げることができることを証明しています。
分析から着想を得た結果,グループDROは,グループ同士の相関関係を直接考慮しない場合に失敗する可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-14T05:39:09Z) - Contrastive Model Inversion for Data-Free Knowledge Distillation [60.08025054715192]
そこで、データ多様性を最適化可能な目的として明示的にモデル化するContrastive Model Inversionを提案します。
我々の主な観察では、同じ量のデータの制約の下では、高いデータの多様性は、通常より強いインスタンス識別を示す。
CIFAR-10, CIFAR-100, Tiny-ImageNetを用いた実験により, 生成したデータを知識蒸留に使用する場合, CMIは極めて優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2021-05-18T15:13:00Z) - Federated Survival Analysis with Discrete-Time Cox Models [0.46331617589391827]
私たちは、フェデレートラーニング(FL)を用いて、異なるセンターに位置する分散データセットから機械学習モデルを構築します。
得られたモデルが、いくつかの悪い設定で重要なパフォーマンス損失を被る可能性があることを示す。
このアプローチを用いて、合成データに基づく標準FL技術と、The Cancer Genome Atlas (TCGA)による実世界のデータセットを用いて生存モデルを訓練する。
論文 参考訳(メタデータ) (2020-06-16T08:53:19Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。