論文の概要: "Flipped" University: LLM-Assisted Lifelong Learning Environment
- arxiv url: http://arxiv.org/abs/2409.10553v2
- Date: Tue, 24 Sep 2024 11:00:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 20:35:12.575289
- Title: "Flipped" University: LLM-Assisted Lifelong Learning Environment
- Title(参考訳): フラッピング」大学:LLM支援生涯学習環境
- Authors: Kirill Krinkin, Tatiana Berlenko,
- Abstract要約: 本稿では,Large Language Models (LLM) が支援する自己構築型生涯学習環境の概念的枠組みを提案する。
提案する枠組みは、制度化された教育からパーソナライズされた自己駆動型学習への転換を強調する。
この論文は、グローバルな知識の整合性を支援することに焦点を当て、教育機関の「華やかな」大学への進化を構想している。
- 参考スコア(独自算出の注目度): 1.0742675209112622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid development of artificial intelligence technologies, particularly Large Language Models (LLMs), has revolutionized the landscape of lifelong learning. This paper introduces a conceptual framework for a self-constructed lifelong learning environment supported by LLMs. It highlights the inadequacies of traditional education systems in keeping pace with the rapid deactualization of knowledge and skills. The proposed framework emphasizes the transformation from institutionalized education to personalized, self-driven learning. It leverages the natural language capabilities of LLMs to provide dynamic and adaptive learning experiences, facilitating the creation of personal intellectual agents that assist in knowledge acquisition. The framework integrates principles of lifelong learning, including the necessity of building personal world models, the dual modes of learning (training and exploration), and the creation of reusable learning artifacts. Additionally, it underscores the importance of curiosity-driven learning and reflective practices in maintaining an effective learning trajectory. The paper envisions the evolution of educational institutions into "flipped" universities, focusing on supporting global knowledge consistency rather than merely structuring and transmitting knowledge.
- Abstract(参考訳): 人工知能技術の急速な発展、特にLarge Language Models (LLMs)は、生涯学習の風景に革命をもたらした。
本稿では,LLMが支援する自己構築型生涯学習環境の概念的枠組みを提案する。
知識と技能の急速な非現実化に追従する上で、従来の教育制度の欠如を強調している。
提案する枠組みは、制度化された教育からパーソナライズされた自己駆動型学習への転換を強調する。
LLMの自然言語機能を活用して、動的かつ適応的な学習体験を提供し、知識獲得を支援する個人知的エージェントの作成を促進する。
このフレームワークは、パーソナルワールドモデルの構築、学習の二重モード(トレーニングと探索)、再利用可能な学習アーティファクトの作成など、生涯学習の原則を統合する。
さらに、効果的な学習軌跡を維持する上で、好奇心駆動学習と反射的実践の重要性を強調している。
この論文は、単に知識を構造化したり伝達したりするのではなく、グローバルな知識の整合性を支援することに焦点を当て、教育機関の「華やかな」大学への進化を構想している。
関連論文リスト
- Refine Knowledge of Large Language Models via Adaptive Contrastive Learning [54.61213933999464]
方法の主流は、大規模言語モデルの知識表現を最適化することで幻覚を減らすことである。
知識を精錬するモデルのプロセスは、人間の学習方法から大きな恩恵を受けることができると私たちは信じています。
人間の学習過程を模倣することで,適応的コントラスト学習戦略を設計する。
論文 参考訳(メタデータ) (2025-02-11T02:19:13Z) - Position: LLMs Can be Good Tutors in Foreign Language Education [87.88557755407815]
我々は、外国語教育(FLE)において、大きな言語モデル(LLM)が効果的な家庭教師として機能する可能性を主張する。
具体的には、(1)データエンハンサーとして、(2)学習教材の作成や学生シミュレーションとして、(2)タスク予測器として、学習者の評価や学習経路の最適化に、(3)エージェントとして、そして、パーソナライズされた包括的教育を可能にする3つの重要な役割を果たせる。
論文 参考訳(メタデータ) (2025-02-08T06:48:49Z) - LLM-powered Multi-agent Framework for Goal-oriented Learning in Intelligent Tutoring System [54.71619734800526]
GenMentorは、ITS内で目標指向でパーソナライズされた学習を提供するために設計されたマルチエージェントフレームワークである。
学習者の目標を、カスタムのゴール・トゥ・スキルデータセットでトレーニングされた微調整LDMを使用して、必要なスキルにマッピングする。
GenMentorは、個々の学習者のニーズに合わせて探索・描画・統合機構で学習内容を調整する。
論文 参考訳(メタデータ) (2025-01-27T03:29:44Z) - WisdomBot: Tuning Large Language Models with Artificial Intelligence Knowledge [17.74988145184004]
大規模言語モデル(LLM)は自然言語処理(NLP)の強力なツールとして登場した。
本稿では,LLMの力と教育理論を組み合わせた,WisdomBotという教育用LLMについて述べる。
本稿では,推論中の2つの重要な拡張,すなわち,ローカル知識ベース検索の強化と,推論中の検索エンジン検索の強化を紹介する。
論文 参考訳(メタデータ) (2025-01-22T13:36:46Z) - Knowledge Mechanisms in Large Language Models: A Survey and Perspective [88.51320482620679]
本稿では,知識利用と進化を含む新しい分類法から知識メカニズムの解析をレビューする。
LLMが学んだ知識、パラメトリック知識の脆弱性の理由、そして解決が難しい潜在的な暗黒知識(仮説)について論じる。
論文 参考訳(メタデータ) (2024-07-22T06:15:59Z) - Self-Tuning: Instructing LLMs to Effectively Acquire New Knowledge through Self-Teaching [67.11497198002165]
大規模言語モデル(LLM)は最新の情報の提供に苦慮することが多い。
既存のアプローチは、通常、新しいドキュメントのトレーニングを継続する。
効率的なヒューマンラーニングにおけるFeynman Techniqueの成功に感銘を受けて、セルフチューニングを紹介した。
論文 参考訳(メタデータ) (2024-06-10T14:42:20Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
大規模言語モデル(LLM)の領域における機械学習の研究
このイニシアチブは、望ましくないデータの影響(機密情報や違法情報など)と関連するモデル機能を排除することを目的としている。
論文 参考訳(メタデータ) (2024-02-13T20:51:58Z) - Taking the Next Step with Generative Artificial Intelligence: The Transformative Role of Multimodal Large Language Models in Science Education [13.87944568193996]
MLLM(Multimodal Large Language Models)は、テキスト、音声、視覚入力を含むマルチモーダルデータを処理できる。
本稿では,科学教育の中心的な側面におけるMLLMの変革的役割について,模範的な革新的な学習シナリオを提示することによって考察する。
論文 参考訳(メタデータ) (2024-01-01T18:11:43Z) - Prototyping the use of Large Language Models (LLMs) for adult learning
content creation at scale [0.6628807224384127]
本稿では,Large Language Models (LLM) の非同期コース生成における利用について検討する。
LLMを利用したコースプロトタイプを開発し,ロバストなHuman-in-the-loopプロセスを実装した。
最初の発見は、このアプローチを採用することで、正確さや明快さを損なうことなく、コンテンツ作成を高速化できることを示している。
論文 参考訳(メタデータ) (2023-06-02T10:58:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。