論文の概要: Adaptive Learning Systems: Personalized Curriculum Design Using LLM-Powered Analytics
- arxiv url: http://arxiv.org/abs/2507.18949v1
- Date: Fri, 25 Jul 2025 04:36:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-28 16:16:48.822058
- Title: Adaptive Learning Systems: Personalized Curriculum Design Using LLM-Powered Analytics
- Title(参考訳): 適応学習システム:LLMを利用した個人化カリキュラム設計
- Authors: Yongjie Li, Ruilin Nong, Jianan Liu, Lucas Evans,
- Abstract要約: 大規模言語モデル(LLM)は、個々の学生のニーズに合わせてパーソナライズされた学習体験を可能にすることによって、教育分野に革命をもたらしている。
本稿では LLM を利用した分析を応用した適応学習システムのためのフレームワークについて紹介する。
- 参考スコア(独自算出の注目度): 14.157213827899342
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large language models (LLMs) are revolutionizing the field of education by enabling personalized learning experiences tailored to individual student needs. In this paper, we introduce a framework for Adaptive Learning Systems that leverages LLM-powered analytics for personalized curriculum design. This innovative approach uses advanced machine learning to analyze real-time data, allowing the system to adapt learning pathways and recommend resources that align with each learner's progress. By continuously assessing students, our framework enhances instructional strategies, ensuring that the materials presented are relevant and engaging. Experimental results indicate a marked improvement in both learner engagement and knowledge retention when using a customized curriculum. Evaluations conducted across varied educational environments demonstrate the framework's flexibility and positive influence on learning outcomes, potentially reshaping conventional educational practices into a more adaptive and student-centered model.
- Abstract(参考訳): 大規模言語モデル(LLM)は、個々の学生のニーズに合わせてパーソナライズされた学習体験を可能にすることによって、教育分野に革命をもたらしている。
本稿では,LLMを利用した分析を応用した適応学習システムのためのフレームワークを,パーソナライズしたカリキュラム設計に適用する。
この革新的なアプローチでは、高度な機械学習を使用してリアルタイムデータを分析し、学習経路を適応させ、学習者の進捗に合わせてリソースを推奨する。
学生を継続的に評価することにより,提案する教材が適切かつ活発であることを保証し,教育戦略を強化する。
実験結果から,学習者参加と知識保持の両面で,カリキュラムのカスタマイズによる顕著な改善が示唆された。
様々な教育環境で行われた評価は、フレームワークの柔軟性と学習結果に対する肯定的な影響を示し、従来の教育実践をより適応的で学生中心のモデルに変える可能性がある。
関連論文リスト
- Unveiling the Learning Mind of Language Models: A Cognitive Framework and Empirical Study [50.065744358362345]
大規模言語モデル(LLM)は、数学、コーディング、推論といったタスクにまたがる印象的な機能を示している。
しかし、彼らの学習能力は、動的環境に適応し、新しい知識を得るのに不可欠であり、まだ過小評価されていない。
論文 参考訳(メタデータ) (2025-06-16T13:24:50Z) - Estimating the Effects of Sample Training Orders for Large Language Models without Retraining [49.59675538160363]
大規模言語モデル(LLM)において,サンプルの訓練順序が重要な役割を担っている
従来の手法では、様々なサンプル順序でモデルを再訓練する必要がある。
リトレーニングフリーのフレームワークを設計することで従来の手法を改善します。
論文 参考訳(メタデータ) (2025-05-28T07:07:02Z) - LLM-powered Multi-agent Framework for Goal-oriented Learning in Intelligent Tutoring System [54.71619734800526]
GenMentorは、ITS内で目標指向でパーソナライズされた学習を提供するために設計されたマルチエージェントフレームワークである。
学習者の目標を、カスタムのゴール・トゥ・スキルデータセットでトレーニングされた微調整LDMを使用して、必要なスキルにマッピングする。
GenMentorは、個々の学習者のニーズに合わせて探索・描画・統合機構で学習内容を調整する。
論文 参考訳(メタデータ) (2025-01-27T03:29:44Z) - A Pre-Trained Graph-Based Model for Adaptive Sequencing of Educational Documents [8.986349423301863]
大規模なオープンオンラインコース(MOOC)は、教育をよりアクセスしやすいものにするために大きく貢献している。
多くのMOOCは、個々の学習者の多様なニーズや背景に対処できない、厳格で一大の全ての構造を維持している。
本研究では,専門家のアノテーションを使わずに機能するパスパーソナライズ学習のための,新たなデータ効率フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-18T12:29:06Z) - Educational Personalized Learning Path Planning with Large Language Models [0.0]
本稿では,これらの課題に対処するために,大規模言語モデル(LLM)と迅速なエンジニアリングを統合する新しいアプローチを提案する。
学習者固有の情報を組み込んだプロンプトを設計することにより,LLama-2-70B や GPT-4 などの LLM をガイドし,パーソナライズ,一貫性,教育的な学習経路を生成する。
論文 参考訳(メタデータ) (2024-07-16T14:32:56Z) - Analysis, Modeling and Design of Personalized Digital Learning Environment [12.248184406275405]
本研究は、革新的なプライベート・ラーニング・インテリジェンス(PLI)フレームワークによって強化された新しいデジタル・ラーニング・環境(DLE)を分析し、モデル化し、開発する。
我々のアプローチは、DLE能力の進歩において重要なものであり、学習者がパーソナライズされたリアルタイム学習体験に積極的に参加できるようにする。
論文 参考訳(メタデータ) (2024-05-17T00:26:16Z) - Evaluating and Optimizing Educational Content with Large Language Model Judgments [52.33701672559594]
言語モデル(LM)を教育専門家として活用し,学習結果に対する様々な指導の影響を評価する。
本稿では,一方のLMが他方のLMの判断を報酬関数として利用して命令材料を生成する命令最適化手法を提案する。
ヒトの教師によるこれらのLM生成ワークシートの評価は、LM判定と人間の教師の嗜好との間に有意な整合性を示す。
論文 参考訳(メタデータ) (2024-03-05T09:09:15Z) - Towards Scalable Adaptive Learning with Graph Neural Networks and
Reinforcement Learning [0.0]
学習経路のパーソナライズに関する問題に対して,フレキシブルでスケーラブルなアプローチを導入する。
我々のモデルはグラフニューラルネットワークに基づく逐次レコメンデーションシステムである。
以上の結果から,小規模データ体制における適切なレコメンデーションを学習できることが示唆された。
論文 参考訳(メタデータ) (2023-05-10T18:16:04Z) - Towards a General Pre-training Framework for Adaptive Learning in MOOCs [37.570119583573955]
異種学習要素を適切に活用した,データ観測と学習スタイル分析に基づく統合フレームワークを提案する。
授業の構造やテキスト,知識は,学生の非逐次学習行動に本質的に整合性があり,モデリングに有用であることがわかった。
論文 参考訳(メタデータ) (2022-07-18T13:18:39Z) - Provable Representation Learning for Imitation Learning via Bi-level
Optimization [60.059520774789654]
現代の学習システムにおける一般的な戦略は、多くのタスクに有用な表現を学ぶことである。
我々は,複数の専門家の軌道が利用できるマルコフ決定過程(MDP)の模倣学習環境において,この戦略を研究する。
このフレームワークは,行動のクローン化と観察-アローンの模倣学習設定のためにインスタンス化する。
論文 参考訳(メタデータ) (2020-02-24T21:03:52Z) - Revisiting Meta-Learning as Supervised Learning [69.2067288158133]
メタラーニングと従来の教師付き学習の関連性を再考し,強化することで,原則的,統一的なフレームワークの提供を目指す。
タスク固有のデータセットとターゲットモデルを(機能、ラベル)サンプルとして扱うことで、多くのメタ学習アルゴリズムを教師付き学習のインスタンスに還元することができる。
この視点は、メタラーニングを直感的で実践的なフレームワークに統一するだけでなく、教師付き学習から直接洞察を伝達してメタラーニングを改善することができる。
論文 参考訳(メタデータ) (2020-02-03T06:13:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。