Manifold-Constrained Nucleus-Level Denoising Diffusion Model for Structure-Based Drug Design
- URL: http://arxiv.org/abs/2409.10584v2
- Date: Mon, 30 Sep 2024 15:09:02 GMT
- Title: Manifold-Constrained Nucleus-Level Denoising Diffusion Model for Structure-Based Drug Design
- Authors: Shengchao Liu, Divin Yan, Weitao Du, Weiyang Liu, Zhuoxinran Li, Hongyu Guo, Christian Borgs, Jennifer Chayes, Anima Anandkumar,
- Abstract summary: atoms must maintain a minimum pairwise distance to avoid separation violations.
NucleusDiff models the interactions between atomic nuclei and their surrounding electron clouds by enforcing the distance constraint.
It reduces violation rate by up to 1000% and enhances binding affinity by up to 22.16%, surpassing state-of-the-art models for structure-based drug design.
- Score: 81.95343363178662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence models have shown great potential in structure-based drug design, generating ligands with high binding affinities. However, existing models have often overlooked a crucial physical constraint: atoms must maintain a minimum pairwise distance to avoid separation violation, a phenomenon governed by the balance of attractive and repulsive forces. To mitigate such separation violations, we propose NucleusDiff. It models the interactions between atomic nuclei and their surrounding electron clouds by enforcing the distance constraint between the nuclei and manifolds. We quantitatively evaluate NucleusDiff using the CrossDocked2020 dataset and a COVID-19 therapeutic target, demonstrating that NucleusDiff reduces violation rate by up to 100.00% and enhances binding affinity by up to 22.16%, surpassing state-of-the-art models for structure-based drug design. We also provide qualitative analysis through manifold sampling, visually confirming the effectiveness of NucleusDiff in reducing separation violations and improving binding affinities.
Related papers
- REBIND: Enhancing ground-state molecular conformation via force-based graph rewiring [38.77055275481021]
We propose REBIND, a novel framework that rewires molecular graphs by adding edges based on the Lennard-Jones potential to capture non-bonded interactions for low-degree atoms.
Experimental results demonstrate that REBIND significantly outperforms state-of-the-art methods across various molecular sizes.
arXiv Detail & Related papers (2024-10-04T16:02:33Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiff is a novel framework to align pretrained target diffusion models with preferred functional properties.
It can generate molecules with state-of-the-art binding energies with up to -7.07 Avg. Vina Score.
arXiv Detail & Related papers (2024-07-01T06:10:29Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
We propose a lightweight module called Dual Attention Module (DAM) for capturing cross-dimension interaction relationships in-temporal skeletal data.
It employs the frame attention mechanism to identify the most significant frames and the skeleton attention mechanism to capture broader relationships across fixed partitions with minimal parameters and flops.
arXiv Detail & Related papers (2024-06-05T06:18:03Z) - AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design [16.946648071157618]
We propose a diffusion-based fragment-wise autoregressive generation model for structure-based drug design (SBDD)
We design a novel molecule assembly strategy named conformal motif that preserves the conformation of local structures of molecules first.
We then encode the interaction of the protein-ligand complex with an SE(3)-equivariant convolutional network and generate molecules motif-by-motif with diffusion modeling.
arXiv Detail & Related papers (2024-04-02T14:44:02Z) - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOpt is a structure-based molecular optimization method based on a controllable and diffusion model.
We show that DecompOpt can efficiently generate molecules with improved properties than strong de novo baselines.
arXiv Detail & Related papers (2024-03-07T02:53:40Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
Existing structured-based drug design methods treat all ligand atoms equally.
We propose a new diffusion model, DecompDiff, with decomposed priors over arms and scaffold.
Our approach achieves state-of-the-art performance in generating high-affinity molecules.
arXiv Detail & Related papers (2024-02-26T05:21:21Z) - Leveraging Side Information for Ligand Conformation Generation using
Diffusion-Based Approaches [12.71967232020327]
Ligand molecule conformation generation is a critical challenge in drug discovery.
Deep learning models have been developed to tackle this problem.
These models often generate conformations that lack meaningful structure and randomness due to the absence of essential side information.
arXiv Detail & Related papers (2023-08-02T09:56:47Z) - From Static to Dynamic Structures: Improving Binding Affinity Prediction with Graph-Based Deep Learning [40.83037811977803]
Dynaformer is a graph-based deep learning model developed to predict protein-ligand binding affinities.
It exhibits state-of-the-art scoring and ranking power on the CASF-2016 benchmark dataset.
In a virtual screening on heat shock protein 90 (HSP90), 20 candidates are identified and their binding affinities are experimentally validated.
arXiv Detail & Related papers (2022-08-19T14:55:12Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - High-Throughput Virtual Screening of Small Molecule Inhibitors for
SARS-CoV-2 Protein Targets with Deep Fusion Models [3.8075853084146023]
Over 500 million small molecules were screened against four protein structures from the novel coronavirus (SARS-CoV-2), which causes COVID-19.
Three enhancements to Deep Fusion were made in order to evaluate more than 5 billion docked poses on SARS-CoV-2 protein targets.
arXiv Detail & Related papers (2021-04-09T18:18:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.