Motion Forecasting via Model-Based Risk Minimization
- URL: http://arxiv.org/abs/2409.10585v1
- Date: Mon, 16 Sep 2024 09:03:28 GMT
- Title: Motion Forecasting via Model-Based Risk Minimization
- Authors: Aron Distelzweig, Eitan Kosman, Andreas Look, Faris Janjoš, Denesh K. Manivannan, Abhinav Valada,
- Abstract summary: We propose a novel sampling method applicable to trajectory prediction based on the predictions of multiple models.
We first show that conventional sampling based on predicted probabilities can degrade performance due to missing alignment between models.
By using state-of-the-art models as base learners, our approach constructs diverse and effective ensembles for optimal trajectory sampling.
- Score: 8.766024024417316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forecasting the future trajectories of surrounding agents is crucial for autonomous vehicles to ensure safe, efficient, and comfortable route planning. While model ensembling has improved prediction accuracy in various fields, its application in trajectory prediction is limited due to the multi-modal nature of predictions. In this paper, we propose a novel sampling method applicable to trajectory prediction based on the predictions of multiple models. We first show that conventional sampling based on predicted probabilities can degrade performance due to missing alignment between models. To address this problem, we introduce a new method that generates optimal trajectories from a set of neural networks, framing it as a risk minimization problem with a variable loss function. By using state-of-the-art models as base learners, our approach constructs diverse and effective ensembles for optimal trajectory sampling. Extensive experiments on the nuScenes prediction dataset demonstrate that our method surpasses current state-of-the-art techniques, achieving top ranks on the leaderboard. We also provide a comprehensive empirical study on ensembling strategies, offering insights into their effectiveness. Our findings highlight the potential of advanced ensembling techniques in trajectory prediction, significantly improving predictive performance and paving the way for more reliable predicted trajectories.
Related papers
- Elucidating the Design Choice of Probability Paths in Flow Matching for Forecasting [44.24834367720476]
Flow matching has recently emerged as a powerful paradigm generative modeling.
We show that forecasting-temporal data with flow matching is highly sensitive to selection of the probability path model.
Motivated by this insight, we propose a novel probability path model to improve forecasting performance.
arXiv Detail & Related papers (2024-10-04T08:34:14Z) - Annealed Winner-Takes-All for Motion Forecasting [48.200282332176094]
We show how an aWTA loss can be integrated with state-of-the-art motion forecasting models to enhance their performance.
Our approach can be easily incorporated into any trajectory prediction model normally trained using WTA.
arXiv Detail & Related papers (2024-09-17T13:26:17Z) - Learning Long-Horizon Predictions for Quadrotor Dynamics [48.08477275522024]
We study the key design choices for efficiently learning long-horizon prediction dynamics for quadrotors.
We show that sequential modeling techniques showcase their advantage in minimizing compounding errors compared to other types of solutions.
We propose a novel decoupled dynamics learning approach, which further simplifies the learning process while also enhancing the approach modularity.
arXiv Detail & Related papers (2024-07-17T19:06:47Z) - Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - Diffusion-Based Environment-Aware Trajectory Prediction [3.1406146587437904]
The ability to predict the future trajectories of traffic participants is crucial for the safe and efficient operation of autonomous vehicles.
In this paper, a diffusion-based generative model for multi-agent trajectory prediction is proposed.
The model is capable of capturing the complex interactions between traffic participants and the environment, accurately learning the multimodal nature of the data.
arXiv Detail & Related papers (2024-03-18T10:35:15Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Enhancing Trajectory Prediction through Self-Supervised Waypoint Noise
Prediction [9.385936248154987]
Trajectory prediction is an important task that involves modeling the indeterminate nature of traffic actors to forecast future trajectories.
We propose a novel approach called SSWNP (Self-Supervised Waypoint Noise Prediction)
In our approach, we first create clean and noise-augmented views of past observed trajectories across the spatial domain of waypoints.
arXiv Detail & Related papers (2023-11-26T19:03:41Z) - Planning with Diffusion for Flexible Behavior Synthesis [125.24438991142573]
We consider what it would look like to fold as much of the trajectory optimization pipeline as possible into the modeling problem.
The core of our technical approach lies in a diffusion probabilistic model that plans by iteratively denoising trajectories.
arXiv Detail & Related papers (2022-05-20T07:02:03Z) - Learning to Predict Vehicle Trajectories with Model-based Planning [43.27767693429292]
We introduce a novel framework called PRIME, which stands for Prediction with Model-based Planning.
Unlike recent prediction works that utilize neural networks to model scene context, PRIME is designed to generate accurate and feasibility-guaranteed future trajectory predictions.
Our PRIME outperforms state-of-the-art methods in prediction accuracy, feasibility, and robustness under imperfect tracking.
arXiv Detail & Related papers (2021-03-06T04:49:24Z) - Video Prediction via Example Guidance [156.08546987158616]
In video prediction tasks, one major challenge is to capture the multi-modal nature of future contents and dynamics.
In this work, we propose a simple yet effective framework that can efficiently predict plausible future states.
arXiv Detail & Related papers (2020-07-03T14:57:24Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.