The Graph's Apprentice: Teaching an LLM Low Level Knowledge for Circuit Quality Estimation
- URL: http://arxiv.org/abs/2411.00843v1
- Date: Wed, 30 Oct 2024 04:20:10 GMT
- Title: The Graph's Apprentice: Teaching an LLM Low Level Knowledge for Circuit Quality Estimation
- Authors: Reza Moravej, Saurabh Bodhe, Zhanguang Zhang, Didier Chetelat, Dimitrios Tsaras, Yingxue Zhang, Hui-Ling Zhen, Jianye Hao, Mingxuan Yuan,
- Abstract summary: We introduce VeriDistill, the first end-to-end machine learning model that directly processes raw Verilog code to predict circuit quality-of-result metrics.
Our model employs a novel knowledge distillation method, transferring low-level circuit insights via graphs into the predictor based on LLM.
Experiments show VeriDistill outperforms state-of-the-art baselines on large-scale Verilog datasets.
- Score: 34.37154877681809
- License:
- Abstract: Logic synthesis is a crucial phase in the circuit design process, responsible for transforming hardware description language (HDL) designs into optimized netlists. However, traditional logic synthesis methods are computationally intensive, restricting their iterative use in refining chip designs. Recent advancements in large language models (LLMs), particularly those fine-tuned on programming languages, present a promising alternative. In this paper, we introduce VeriDistill, the first end-to-end machine learning model that directly processes raw Verilog code to predict circuit quality-of-result metrics. Our model employs a novel knowledge distillation method, transferring low-level circuit insights via graphs into the predictor based on LLM. Experiments show VeriDistill outperforms state-of-the-art baselines on large-scale Verilog datasets and demonstrates robust performance when evaluated on out-of-distribution datasets.
Related papers
- Logic Synthesis Optimization with Predictive Self-Supervision via Causal Transformers [19.13500546022262]
We introduce LSOformer, a novel approach harnessing Autoregressive transformer models and predictive SSL to predict the trajectory of Quality of Results (QoR)
LSOformer integrates cross-attention modules to merge insights from circuit graphs and optimization sequences, thereby enhancing prediction accuracy for QoR metrics.
arXiv Detail & Related papers (2024-09-16T18:45:07Z) - BetterV: Controlled Verilog Generation with Discriminative Guidance [11.162807308782751]
We propose a Verilog generation framework, BetterV, which fine-tunes the large language models (LLMs) on processed domain-specific runtime.
BetterV has the ability to generate syntactically and functionally correct Verilog, which can outperform GPT-4 on the VerilogEval benchmark.
arXiv Detail & Related papers (2024-02-03T08:00:12Z) - Retrieval-Guided Reinforcement Learning for Boolean Circuit Minimization [23.075466444266528]
This study conducts a thorough examination of learning and search techniques for logic synthesis.
We present ABC-RL, a meticulously tuned $alpha$ parameter that adeptly adjusts recommendations from pre-trained agents during the search process.
Our findings showcase substantial enhancements in the Quality-of-result (QoR) of synthesized circuits, boasting improvements of up to 24.8% compared to state-of-the-art techniques.
arXiv Detail & Related papers (2024-01-22T18:46:30Z) - Uncovering mesa-optimization algorithms in Transformers [61.06055590704677]
Some autoregressive models can learn as an input sequence is processed, without undergoing any parameter changes, and without being explicitly trained to do so.
We show that standard next-token prediction error minimization gives rise to a subsidiary learning algorithm that adjusts the model as new inputs are revealed.
Our findings explain in-context learning as a product of autoregressive loss minimization and inform the design of new optimization-based Transformer layers.
arXiv Detail & Related papers (2023-09-11T22:42:50Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - INVICTUS: Optimizing Boolean Logic Circuit Synthesis via Synergistic
Learning and Search [18.558280701880136]
State-of-the-art logic synthesis algorithms have a large number of logic minimizations.
INVICTUS generates a sequence of logic minimizations based on a training dataset of previously seen designs.
arXiv Detail & Related papers (2023-05-22T15:50:42Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
"CodeRL" is a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning.
During inference, we introduce a new generation procedure with a critical sampling strategy.
For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives.
arXiv Detail & Related papers (2022-07-05T02:42:15Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z) - Synthetic Datasets for Neural Program Synthesis [66.20924952964117]
We propose a new methodology for controlling and evaluating the bias of synthetic data distributions over both programs and specifications.
We demonstrate, using the Karel DSL and a small Calculator DSL, that training deep networks on these distributions leads to improved cross-distribution generalization performance.
arXiv Detail & Related papers (2019-12-27T21:28:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.