Using Generative Models to Produce Realistic Populations of the United Kingdom Windstorms
- URL: http://arxiv.org/abs/2409.10696v1
- Date: Mon, 16 Sep 2024 19:53:33 GMT
- Title: Using Generative Models to Produce Realistic Populations of the United Kingdom Windstorms
- Authors: Etron Yee Chun Tsoi,
- Abstract summary: dissertation explores the application of generative models to produce realistic synthetic wind field data.
Three models, including standard GANs, WGAN-GP, and U-net diffusion models, were employed to generate wind maps of the UK.
The results reveal that while all models are effective in capturing the general spatial characteristics, each model exhibits distinct strengths and weaknesses.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Windstorms significantly impact the UK, causing extensive damage to property, disrupting society, and potentially resulting in loss of life. Accurate modelling and understanding of such events are essential for effective risk assessment and mitigation. However, the rarity of extreme windstorms results in limited observational data, which poses significant challenges for comprehensive analysis and insurance modelling. This dissertation explores the application of generative models to produce realistic synthetic wind field data, aiming to enhance the robustness of current CAT models used in the insurance industry. The study utilises hourly reanalysis data from the ERA5 dataset, which covers the period from 1940 to 2022. Three models, including standard GANs, WGAN-GP, and U-net diffusion models, were employed to generate high-quality wind maps of the UK. These models are then evaluated using multiple metrics, including SSIM, KL divergence, and EMD, with some assessments performed in a reduced dimensionality space using PCA. The results reveal that while all models are effective in capturing the general spatial characteristics, each model exhibits distinct strengths and weaknesses. The standard GAN introduced more noise compared to the other models. The WGAN-GP model demonstrated superior performance, particularly in replicating statistical distributions. The U-net diffusion model produced the most visually coherent outputs but struggled slightly in replicating peak intensities and their statistical variability. This research underscores the potential of generative models in supplementing limited reanalysis datasets with synthetic data, providing valuable tools for risk assessment and catastrophe modelling. However, it is important to select appropriate evaluation metrics that assess different aspects of the generated outputs. Future work could refine these models and incorporate more ...
Related papers
- Comparing Fairness of Generative Mobility Models [3.699135947901772]
This work examines the fairness of generative mobility models, addressing the often overlooked dimension of equity in model performance across geographic regions.
Predictive models built on crowd flow data are instrumental in understanding urban structures and movement patterns.
We propose a novel framework for assessing fairness by measuring utility and equity of generated traces.
arXiv Detail & Related papers (2024-11-07T06:01:12Z) - Fuxi-DA: A Generalized Deep Learning Data Assimilation Framework for Assimilating Satellite Observations [15.934673617658609]
Deep learning models have shown promise in matching, even surpassing, the forecast accuracy of leading NWP models worldwide.
This study introduces FuxiDA, a generalized DL-based DA framework for assimilating satellite observations.
By assimilating data from Advanced Geosynchronous Radiation Imager (AGRI) aboard Fengyun-4B, FuXi-DA consistently mitigates analysis errors and significantly improves forecast performance.
arXiv Detail & Related papers (2024-04-12T15:02:14Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Scaling Laws Do Not Scale [54.72120385955072]
Recent work has argued that as the size of a dataset increases, the performance of a model trained on that dataset will increase.
We argue that this scaling law relationship depends on metrics used to measure performance that may not correspond with how different groups of people perceive the quality of models' output.
Different communities may also have values in tension with each other, leading to difficult, potentially irreconcilable choices about metrics used for model evaluations.
arXiv Detail & Related papers (2023-07-05T15:32:21Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models [60.48306899271866]
We present a new framework, called GREAT Score, for global robustness evaluation of adversarial perturbation using generative models.
We show high correlation and significantly reduced cost of GREAT Score when compared to the attack-based model ranking on RobustBench.
GREAT Score can be used for remote auditing of privacy-sensitive black-box models.
arXiv Detail & Related papers (2023-04-19T14:58:27Z) - A Bayesian Generative Adversarial Network (GAN) to Generate Synthetic
Time-Series Data, Application in Combined Sewer Flow Prediction [3.3139597764446607]
In machine learning, generative models are a class of methods capable of learning data distribution to generate artificial data.
In this study, we developed a GAN model to generate synthetic time series to balance our limited recorded time series data.
The aim is to predict the flow using precipitation data and examine the impact of data augmentation using synthetic data in model performance.
arXiv Detail & Related papers (2023-01-31T16:12:26Z) - A prediction and behavioural analysis of machine learning methods for
modelling travel mode choice [0.26249027950824505]
We conduct a systematic comparison of different modelling approaches, across multiple modelling problems, in terms of the key factors likely to affect model choice.
Results indicate that the models with the highest disaggregate predictive performance provide poorer estimates of behavioural indicators and aggregate mode shares.
It is also observed that the MNL model performs robustly in a variety of situations, though ML techniques can improve the estimates of behavioural indices such as Willingness to Pay.
arXiv Detail & Related papers (2023-01-11T11:10:32Z) - CausalAgents: A Robustness Benchmark for Motion Forecasting using Causal
Relationships [8.679073301435265]
We construct a new benchmark for evaluating and improving model robustness by applying perturbations to existing data.
We use these labels to perturb the data by deleting non-causal agents from the scene.
Under non-causal perturbations, we observe a $25$-$38%$ relative change in minADE as compared to the original.
arXiv Detail & Related papers (2022-07-07T21:28:23Z) - CARLA-GeAR: a Dataset Generator for a Systematic Evaluation of
Adversarial Robustness of Vision Models [61.68061613161187]
This paper presents CARLA-GeAR, a tool for the automatic generation of synthetic datasets for evaluating the robustness of neural models against physical adversarial patches.
The tool is built on the CARLA simulator, using its Python API, and allows the generation of datasets for several vision tasks in the context of autonomous driving.
The paper presents an experimental study to evaluate the performance of some defense methods against such attacks, showing how the datasets generated with CARLA-GeAR might be used in future work as a benchmark for adversarial defense in the real world.
arXiv Detail & Related papers (2022-06-09T09:17:38Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.