Evolving a Multi-Population Evolutionary-QAOA on Distributed QPUs
- URL: http://arxiv.org/abs/2409.10739v2
- Date: Thu, 19 Sep 2024 14:50:03 GMT
- Title: Evolving a Multi-Population Evolutionary-QAOA on Distributed QPUs
- Authors: Francesca Schiavello, Edoardo Altamura, Ivano Tavernelli, Stefano Mensa, Benjamin Symons,
- Abstract summary: We demonstrate that our Evolutionary-QAOA (E-QAOA) pairing performs on par or better than a COBYLA-based QAOA.
We also present a novel approach by presenting a multi-population EA distributed on two QPUs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Our research combines an Evolutionary Algorithm (EA) with a Quantum Approximate Optimization Algorithm (QAOA) to update the ansatz parameters, in place of traditional gradient-based methods, and benchmark on the Max-Cut problem. We demonstrate that our Evolutionary-QAOA (E-QAOA) pairing performs on par or better than a COBYLA-based QAOA in terms of solution accuracy and variance, for $d$-3 regular graphs between 4 and 26 nodes, using both $max\_count$ and Conditional Value at Risk (CVaR) for fitness function evaluations. Furthermore, we take our algorithm one step further and present a novel approach by presenting a multi-population EA distributed on two QPUs, which evolves independent and isolated populations in parallel, classically communicating elite individuals. Experiments were conducted on both simulators and IBM quantum hardware, and we investigated the relative performance accuracy and variance.
Related papers
- Improving the trainability of VQE on NISQ computers for solving portfolio optimization using convex interpolation [8.186804065389007]
We improve the trainability of variational quantum eigensolver (VQE) by utilizing convexarity to solve portfolio optimization.<n>Based on convex, the location of the ground state can be evaluated by learning the property of a small subset of basis states in the Hilbert space.<n>The successfully implementation of a $40$-qubit experiment using only $10$ superconducting qubits demonstrates the effectiveness of our proposals.
arXiv Detail & Related papers (2024-07-08T03:51:54Z) - Fast Genetic Algorithm for feature selection -- A qualitative approximation approach [5.279268784803583]
We propose a two-stage surrogate-assisted evolutionary approach to address the computational issues arising from using Genetic Algorithm (GA) for feature selection.
We show that CHCQX converges faster to feature subset solutions of significantly higher accuracy, particularly for large datasets with over 100K instances.
arXiv Detail & Related papers (2024-04-05T10:15:24Z) - A Near-Optimal Single-Loop Stochastic Algorithm for Convex Finite-Sum Coupled Compositional Optimization [53.14532968909759]
We introduce an efficient single-loop primal-dual block-coordinate algorithm called ALEXR.
We establish the convergence rates of ALEXR in both convex and strongly convex cases under smoothness and non-smoothness conditions.
Experimental results on GDRO and partial Area Under the ROC Curve for cFCCO demonstrate the promising performance of our algorithm.
arXiv Detail & Related papers (2023-12-04T19:00:07Z) - Pointer Networks with Q-Learning for Combinatorial Optimization [55.2480439325792]
We introduce the Pointer Q-Network (PQN), a hybrid neural architecture that integrates model-free Q-value policy approximation with Pointer Networks (Ptr-Nets)
Our empirical results demonstrate the efficacy of this approach, also testing the model in unstable environments.
arXiv Detail & Related papers (2023-11-05T12:03:58Z) - Efficient DCQO Algorithm within the Impulse Regime for Portfolio
Optimization [41.94295877935867]
We propose a faster digital quantum algorithm for portfolio optimization using the digitized-counterdiabatic quantum optimization (DCQO) paradigm.
Our approach notably reduces the circuit depth requirement of the algorithm and enhances the solution accuracy, making it suitable for current quantum processors.
We experimentally demonstrate the advantages of our protocol using up to 20 qubits on an IonQ trapped-ion quantum computer.
arXiv Detail & Related papers (2023-08-29T17:53:08Z) - Massively Parallel Genetic Optimization through Asynchronous Propagation
of Populations [50.591267188664666]
Propulate is an evolutionary optimization algorithm and software package for global optimization.
We provide an MPI-based implementation of our algorithm, which features variants of selection, mutation, crossover, and migration.
We find that Propulate is up to three orders of magnitude faster without sacrificing solution accuracy.
arXiv Detail & Related papers (2023-01-20T18:17:34Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Hybrid Quantum Classical Simulations [0.0]
We report on two major hybrid applications of quantum computing, namely, the quantum approximate optimisation algorithm (QAOA) and the variational quantum eigensolver (VQE)
Both are hybrid quantum classical algorithms as they require incremental communication between a classical central processing unit and a quantum processing unit to solve a problem.
arXiv Detail & Related papers (2022-10-06T10:49:15Z) - Analysis of Quality Diversity Algorithms for the Knapsack Problem [14.12876643502492]
We apply the QD paradigm to simulate dynamic programming behaviours on knapsack problem.
We show that they are able to compute an optimal solution within expected pseudo-polynomial time.
arXiv Detail & Related papers (2022-07-28T12:15:33Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
Bilevel optimization has been applied to a wide variety of machine learning models.
Most existing algorithms restrict their single-machine setting so that they are incapable of handling distributed data.
We develop novel decentralized bilevel optimization algorithms based on a gradient tracking communication mechanism and two different gradients.
arXiv Detail & Related papers (2022-06-30T05:29:52Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2021-07-11T10:56:24Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
Variational quantum algorithms (VQAs) have the potential of utilizing near-term quantum machines to gain certain computational advantages.
Modern VQAs suffer from cumbersome computational overhead, hampered by the tradition of employing a solitary quantum processor to handle large data.
Here we devise an efficient distributed optimization scheme, called QUDIO, to address this issue.
arXiv Detail & Related papers (2021-06-24T08:18:42Z) - Error Mitigation for Deep Quantum Optimization Circuits by Leveraging
Problem Symmetries [2.517903855792476]
We introduce an application-specific approach for mitigating the errors in QAOA evolution by leveraging the symmetries present in the classical objective function to be optimized.
Specifically, the QAOA state is projected into the symmetry-restricted subspace, with projection being performed either at the end of the circuit or throughout the evolution.
Our approach improves the fidelity of the QAOA state, thereby increasing both the accuracy of the sample estimate of the QAOA objective and the probability of sampling the binary string corresponding to that objective value.
arXiv Detail & Related papers (2021-06-08T14:40:48Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Hybrid quantum variational algorithm for simulating open quantum systems
with near-term devices [0.0]
Hybrid quantum-classical (HQC) algorithms make it possible to use near-term quantum devices supported by classical computational resources.
We develop an HQC algorithm using an efficient variational optimization approach to simulate open system dynamics.
arXiv Detail & Related papers (2020-08-12T13:49:29Z) - The Cone epsilon-Dominance: An Approach for Evolutionary Multiobjective
Optimization [1.0323063834827413]
cone epsilon-dominance approach to improve convergence and diversity in evolutionary algorithms.
Sixteen well-known benchmark problems are considered in the experimental section.
Results suggest that the cone-eps-MOEA is capable of presenting an efficient and balanced performance over all the performance metrics considered.
arXiv Detail & Related papers (2020-07-14T14:13:13Z) - Fast Objective & Duality Gap Convergence for Non-Convex Strongly-Concave
Min-Max Problems with PL Condition [52.08417569774822]
This paper focuses on methods for solving smooth non-concave min-max problems, which have received increasing attention due to deep learning (e.g., deep AUC)
arXiv Detail & Related papers (2020-06-12T00:32:21Z) - Evaluation of QAOA based on the approximation ratio of individual
samples [0.0]
We simulate the performance of QAOA applied to the Max-Cut problem and compare it with some of the best classical alternatives.
Because of the evolving QAOA computational complexity-theoretic guidance, we utilize a framework for the search for quantum advantage.
arXiv Detail & Related papers (2020-06-08T18:00:18Z) - The Hessian Estimation Evolution Strategy [3.756550107432323]
We present a novel black box optimization algorithm called Hessian Estimation Evolution Strategy.
The algorithm updates the covariance matrix of its sampling distribution by directly estimating the curvature of the objective function.
arXiv Detail & Related papers (2020-03-30T08:01:16Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z) - Multi-block ADMM Heuristics for Mixed-Binary Optimization on Classical
and Quantum Computers [3.04585143845864]
We present a decomposition-based approach to extend the applicability of current approaches to "quadratic plus convex" mixed binary optimization problems.
We show that the alternating direction method of multipliers (ADMM) can split the MBO into a binary unconstrained problem (that can be solved with quantum algorithms)
The validity of the approach is then showcased by numerical results obtained on several optimization problems via simulations with VQE and QAOA on the quantum circuits implemented in Qiskit.
arXiv Detail & Related papers (2020-01-07T14:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.