Symmetries of Liouvillians of squeeze-driven parametric oscillators
- URL: http://arxiv.org/abs/2409.10744v1
- Date: Mon, 16 Sep 2024 21:22:07 GMT
- Title: Symmetries of Liouvillians of squeeze-driven parametric oscillators
- Authors: Francesco Iachello, Colin V. Coane, Jayameenakshi Venkatraman,
- Abstract summary: We find a remarkable quasi-spin symmetry $su(2)$ at integer values of the ratio $eta =omega /K$ of the detuning parameter $omega$ to the Kerr coefficient $K$.
Our findings may have applications in the generation and stabilization of states of interest in quantum computing.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the symmetries of the Liouville superoperator of one dimensional parametric oscillators, especially the so-called squeeze-driven Kerr oscillator, and discover a remarkable quasi-spin symmetry $su(2)$ at integer values of the ratio $\eta =\omega /K$ of the detuning parameter $\omega$ to the Kerr coefficient $K$, which reflects the symmetry previously found for the Hamiltonian operator. We find that the Liouvillian of an $su(2)$ representation $\left\vert j,m_{j}\right\rangle$ has a characteristic double-ellipsoidal structure, and calculate the relaxation time $T_{X}$ for this structure. We then study the phase transitions of the Liouvillian which occur as a function of the parameters $\xi =\varepsilon _{2}/K$ and $\eta=\omega /K$. Finally, we study the temperature dependence of the spectrum of eigenvalues of the Liouvillian. Our findings may have applications in the generation and stabilization of states of interest in quantum computing.
Related papers
- Symmetries of the squeeze-driven Kerr oscillator [0.0]
We find a remarkable quasi-spin symmetry $su(2)$ at integer values of the ratio $eta=Delta /K$ of the detuning parameter $Delta $ to the Kerr coefficient $K$.
We investigate the stability of this newly discovered symmetry to high-order perturbations arising from the static effective expansion of the driven Hamiltonian.
Our finding may find applications in the generation and stabilization of states useful for quantum computing.
arXiv Detail & Related papers (2023-10-13T16:50:19Z) - Non-standard quantum algebras and finite dimensional
$\mathcal{PT}$-symmetric systems [0.0]
We study the spectrum of a family of non-Hermitian Hamiltonians written in terms of the generators of the non-standard $U_z(sl(2, mathbb R))$ Hopf algebra deformation.
We show that this non-standard quantum algebra can be used to define an effective model Hamiltonian describing accurately the experimental spectra of three-electron hybrid qubits.
arXiv Detail & Related papers (2023-09-26T23:17:22Z) - Schrieffer-Wolff transformation for non-Hermitian systems: application
for $\mathcal{PT}$-symmetric circuit QED [0.0]
We develop the generalized Schrieffer-Wolff transformation and derive the effective Hamiltonian suitable for various quasi-degenerate textitnon-Hermitian systems.
We show that non-hermiticity mixes the "dark" and the "bright" states, which has a direct experimental consequence.
arXiv Detail & Related papers (2023-09-18T14:50:29Z) - Quantum dynamics of a driven parametric oscillator in a Kerr medium [0.0]
We show that the evolution operator can be obtained from the evolution operator of another parametric oscillator with a constant mass and time-dependent frequency.
In the following, to investigate the characteristics and statistical properties of the generated states, we calculate the autocorrelation function, the Mandel $Q$ parameter, and the Husimi $Q$-function.
arXiv Detail & Related papers (2023-06-04T03:44:37Z) - Quantum Current and Holographic Categorical Symmetry [62.07387569558919]
A quantum current is defined as symmetric operators that can transport symmetry charges over an arbitrary long distance.
The condition for quantum currents to be superconducting is also specified, which corresponds to condensation of anyons in one higher dimension.
arXiv Detail & Related papers (2023-05-22T11:00:25Z) - Towards Antisymmetric Neural Ansatz Separation [48.80300074254758]
We study separations between two fundamental models of antisymmetric functions, that is, functions $f$ of the form $f(x_sigma(1), ldots, x_sigma(N))
These arise in the context of quantum chemistry, and are the basic modeling tool for wavefunctions of Fermionic systems.
arXiv Detail & Related papers (2022-08-05T16:35:24Z) - From quartic anharmonic oscillator to double well potential [77.34726150561087]
It is shown that by taking uniformly-accurate approximation for anharmonic oscillator eigenfunction $Psi_ao(u)$, obtained recently, it is possible to get highly accurate approximation for both the eigenfunctions of the double-well potential and its eigenvalues.
arXiv Detail & Related papers (2021-10-30T20:16:27Z) - $\mathcal{PT}$ phase transition in open quantum systems with Lindblad
dynamics [0.0]
We show that the eigenvalue structure of the Liouvillian clearly changes at the $mathcalPT$ symmetry breaking point.
In particular, in a $mathcalPT$ unbroken phase, some eigenvalues are pure imaginary numbers while in a $mathcalPT$ broken phase, all the eigenvalues are real.
Our results support the validity of the proposed criterion of Liouvillian $mathcalPT$ symmetry.
arXiv Detail & Related papers (2021-04-15T10:16:39Z) - Fermion and meson mass generation in non-Hermitian Nambu--Jona-Lasinio
models [77.34726150561087]
We investigate the effects of non-Hermiticity on interacting fermionic systems.
We do this by including non-Hermitian bilinear terms into the 3+1 dimensional Nambu--Jona-Lasinio (NJL) model.
arXiv Detail & Related papers (2021-02-02T13:56:11Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Anharmonic oscillator: a solution [77.34726150561087]
The dynamics in $x$-space and in $(gx)-space corresponds to the same energy spectrum with effective coupling constant $hbar g2$.
A 2-classical generalization leads to a uniform approximation of the wavefunction in $x$-space with unprecedented accuracy.
arXiv Detail & Related papers (2020-11-29T22:13:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.