Non-standard quantum algebras and finite dimensional
$\mathcal{PT}$-symmetric systems
- URL: http://arxiv.org/abs/2309.15305v1
- Date: Tue, 26 Sep 2023 23:17:22 GMT
- Title: Non-standard quantum algebras and finite dimensional
$\mathcal{PT}$-symmetric systems
- Authors: \'Angel Ballesteros, Romina Ram\'irez and Marta Reboiro
- Abstract summary: We study the spectrum of a family of non-Hermitian Hamiltonians written in terms of the generators of the non-standard $U_z(sl(2, mathbb R))$ Hopf algebra deformation.
We show that this non-standard quantum algebra can be used to define an effective model Hamiltonian describing accurately the experimental spectra of three-electron hybrid qubits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, $\mathcal{PT}$-symmetric Hamiltonians defined on quantum $sl(2,
\mathbb R)$ algebras are presented. We study the spectrum of a family of
non-Hermitian Hamiltonians written in terms of the generators of the
non-standard $U_{z}(sl(2, \mathbb R))$ Hopf algebra deformation of $sl(2,
\mathbb R)$. By making use of a particular boson representation of the
generators of $U_{z}(sl(2, \mathbb R))$, both the co-product and the
commutation relations of the quantum algebra are shown to be invariant under
the $\mathcal{PT}$-transformation. In terms of these operators, we construct
several finite dimensional $\mathcal{PT}$-symmetry Hamiltonians, whose spectrum
is analytically obtained for any arbitrary dimension. In particular, we show
the appearance of Exceptional Points in the space of model parameters and we
discuss the behaviour of the spectrum both in the exact $\mathcal{PT}$-symmetry
and the broken $\mathcal{PT}$-symmetry dynamical phases. As an application, we
show that this non-standard quantum algebra can be used to define an effective
model Hamiltonian describing accurately the experimental spectra of
three-electron hybrid qubits based on asymmetric double quantum dots.
Remarkably enough, in this effective model, the deformation parameter $z$ has
to be identified with the detuning parameter of the system.
Related papers
- Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - Discrete-coordinate crypto-Hermitian quantum system controlled by
time-dependent Robin boundary conditions [0.0]
unitary quantum mechanics formulated in non-Hermitian (or, more precisely, in hiddenly Hermitian) interaction-picture representation is illustrated via an elementary $N$ by $N$ matrix Hamiltonian $H(t)$ mimicking a 1D-box system with physics controlled by time-dependent boundary conditions.
Our key message is that contrary to the conventional beliefs and in spite of the unitarity of the evolution of the system, neither its "Heisenbergian Hamiltonian" $Sigma(t)$ nor its "Schr"odingerian Hamiltonian" $G(
arXiv Detail & Related papers (2024-01-19T13:28:42Z) - Remarks on effects of projective phase on eigenstate thermalization hypothesis [0.0]
We consider $mathbbZ_NtimesmathbbZ_N$ symmetries with nontrivial projective phases.
We also perform numerical analyses for $ (1+1)$-dimensional spin chains and the $ (2+1)$-dimensional lattice gauge theory.
arXiv Detail & Related papers (2023-10-17T17:36:37Z) - Quantum Current and Holographic Categorical Symmetry [62.07387569558919]
A quantum current is defined as symmetric operators that can transport symmetry charges over an arbitrary long distance.
The condition for quantum currents to be superconducting is also specified, which corresponds to condensation of anyons in one higher dimension.
arXiv Detail & Related papers (2023-05-22T11:00:25Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
We design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset.
We use fully connected neural networks to model the transformations symmetry and the corresponding generators.
Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.
arXiv Detail & Related papers (2023-01-13T16:25:25Z) - Towards Antisymmetric Neural Ansatz Separation [48.80300074254758]
We study separations between two fundamental models of antisymmetric functions, that is, functions $f$ of the form $f(x_sigma(1), ldots, x_sigma(N))
These arise in the context of quantum chemistry, and are the basic modeling tool for wavefunctions of Fermionic systems.
arXiv Detail & Related papers (2022-08-05T16:35:24Z) - $O(N^2)$ Universal Antisymmetry in Fermionic Neural Networks [107.86545461433616]
We propose permutation-equivariant architectures, on which a determinant Slater is applied to induce antisymmetry.
FermiNet is proved to have universal approximation capability with a single determinant, namely, it suffices to represent any antisymmetric function.
We substitute the Slater with a pairwise antisymmetry construction, which is easy to implement and can reduce the computational cost to $O(N2)$.
arXiv Detail & Related papers (2022-05-26T07:44:54Z) - Conformal bridge transformation, $\mathcal{PT}$- and super- symmetry [0.0]
Supersymmetric extensions of the 1D and 2D Swanson models are investigated by applying the conformal bridge transformation (CBT) to the first order Berry-Keating Hamiltonian multiplied by $i$ and its conformally neutral enlargements.
arXiv Detail & Related papers (2021-12-26T22:05:33Z) - Construction of a new three boson non-hermitian Hamiltonian associated
to deformed Higgs algebra: real eigenvalues and Partial PT-symmetry [0.0]
Fusion of Jordan-Schwinger realization of complexified $mathfraksu(2)$ with Dyson-Maleev representation.
Non-hermitian Hamiltonian has real eigenvalues and eigensymmetry inducedity.
arXiv Detail & Related papers (2021-11-07T06:40:47Z) - Fermion and meson mass generation in non-Hermitian Nambu--Jona-Lasinio
models [77.34726150561087]
We investigate the effects of non-Hermiticity on interacting fermionic systems.
We do this by including non-Hermitian bilinear terms into the 3+1 dimensional Nambu--Jona-Lasinio (NJL) model.
arXiv Detail & Related papers (2021-02-02T13:56:11Z) - Discriminating an Arbitrary Number of Pure Quantum States by the
Combined $\mathcal{CPT}$ and Hermitian Measurements [1.840931826951159]
It's possible to distinguish an arbitrary number of pure quantum states by an appropriate choice of the parameters of $mathcalPT$-symmetric Hamiltonian.
arXiv Detail & Related papers (2020-08-16T17:05:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.