論文の概要: Machine Learning for Public Good: Predicting Urban Crime Patterns to Enhance Community Safety
- arxiv url: http://arxiv.org/abs/2409.10838v1
- Date: Tue, 17 Sep 2024 02:07:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 18:20:31.762362
- Title: Machine Learning for Public Good: Predicting Urban Crime Patterns to Enhance Community Safety
- Title(参考訳): 公共財のための機械学習: 都市犯罪パターンを予測してコミュニティの安全を高める
- Authors: Sia Gupta, Simeon Sayer,
- Abstract要約: 本稿では,都市部における犯罪の空間的・時間的パターンを予測するML手法の有効性について検討する。
研究目標は、呼び出しを優先度レベルに分類する際の高い精度を達成することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, urban safety has become a paramount concern for city planners and law enforcement agencies. Accurate prediction of likely crime occurrences can significantly enhance preventive measures and resource allocation. However, many law enforcement departments lack the tools to analyze and apply advanced AI and ML techniques that can support city planners, watch programs, and safety leaders to take proactive steps towards overall community safety. This paper explores the effectiveness of ML techniques to predict spatial and temporal patterns of crimes in urban areas. Leveraging police dispatch call data from San Jose, CA, the research goal is to achieve a high degree of accuracy in categorizing calls into priority levels particularly for more dangerous situations that require an immediate law enforcement response. This categorization is informed by the time, place, and nature of the call. The research steps include data extraction, preprocessing, feature engineering, exploratory data analysis, implementation, optimization and tuning of different supervised machine learning models and neural networks. The accuracy and precision are examined for different models and features at varying granularity of crime categories and location precision. The results demonstrate that when compared to a variety of other models, Random Forest classification models are most effective in identifying dangerous situations and their corresponding priority levels with high accuracy (Accuracy = 85%, AUC = 0.92) at a local level while ensuring a minimum amount of false negatives. While further research and data gathering is needed to include other social and economic factors, these results provide valuable insights for law enforcement agencies to optimize resources, develop proactive deployment approaches, and adjust response patterns to enhance overall public safety outcomes in an unbiased way.
- Abstract(参考訳): 近年、都市安全は都市計画者や法執行機関にとって最重要課題となっている。
犯罪発生の正確な予測は、予防措置や資源配分を大幅に強化することができる。
しかし、多くの法執行機関は、都市計画者、監視プログラム、安全指導者を支援する高度なAIとML技術を分析し、適用するためのツールを欠いている。
本稿では,都市部における犯罪の空間的・時間的パターンを予測するML手法の有効性について検討する。
カリフォルニア州サンノゼからの警察の通報データを活用することで、特に即時法執行機関の対応を必要とする危険な状況に対して、通話を優先度レベルに分類する際の高い精度を達成することが研究目標である。
この分類は、呼び出しの時間、場所、性質によって通知される。
研究ステップには、データ抽出、前処理、機能エンジニアリング、探索的データ分析、実装、さまざまな教師付き機械学習モデルとニューラルネットワークの最適化とチューニングが含まれる。
犯罪カテゴリの粒度や位置精度の異なるモデルや特徴について,精度と精度について検討した。
その結果、他の様々なモデルと比較すると、ランダムフォレスト分類モデルは、最小限の偽陰性の量を確保しつつ、高い精度(精度=85%、AUC=0.92)で危険状況とそれに対応する優先度レベルを特定するのに最も効果的であることが示された。
さらなる研究とデータ収集は、他の社会的・経済的要因を含む必要があるが、これらの結果は、法執行機関が資源を最適化し、積極的に展開するアプローチを開発し、反応パターンを調整し、不偏な方法で全体の公衆の安全効果を高めるための貴重な洞察を提供する。
関連論文リスト
- Model Inversion Attacks: A Survey of Approaches and Countermeasures [59.986922963781]
近年、新しいタイプのプライバシ攻撃であるモデル反転攻撃(MIA)は、トレーニングのためのプライベートデータの機密性を抽出することを目的としている。
この重要性にもかかわらず、総合的な概要とMIAに関する深い洞察を提供する体系的な研究が欠如している。
本調査は、攻撃と防御の両方において、最新のMIA手法を要約することを目的としている。
論文 参考訳(メタデータ) (2024-11-15T08:09:28Z) - New Emerged Security and Privacy of Pre-trained Model: a Survey and Outlook [54.24701201956833]
セキュリティとプライバシーの問題は、事前訓練されたモデルに対するユーザーの信頼を損なう。
現在の文献は、事前訓練されたモデルに対する攻撃と防御の明確な分類を欠いている。
この分類法は、攻撃と防御をNo-Change、Input-Change、Model-Changeアプローチに分類する。
論文 参考訳(メタデータ) (2024-11-12T10:15:33Z) - Revolutionizing Urban Safety Perception Assessments: Integrating Multimodal Large Language Models with Street View Images [5.799322786332704]
都市の安全知覚を測定することは、伝統的に人的資源に大きく依存する重要かつ複雑な作業である。
マルチモーダル大規模言語モデル(MLLM)の最近の進歩は、強力な推論と分析能力を示している。
都市全体の安全指標を迅速に評価するための,CLIP機能とK-Nearest Neighbors(K-NN)検索に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T06:03:13Z) - SpatialRank: Urban Event Ranking with NDCG Optimization on
Spatiotemporal Data [55.609946936979036]
本研究ではSpatialRankという新しい空間イベントランキング手法を提案する。
本研究では,SpatialRankが犯罪や交通事故の最も危険性の高い場所を効果的に特定できることを示す。
論文 参考訳(メタデータ) (2023-09-30T06:20:21Z) - Spatial-Temporal Meta-path Guided Explainable Crime Prediction [40.03641583647572]
本稿では,犯罪行為の動的なパターンを捉えるために,時空間メタパスガイド付き説明可能な犯罪予測(STMEC)フレームワークを提案する。
我々は,特にフェロニー予測において,他の高度な時間モデルと比較してSTMECの優位性を示す。
論文 参考訳(メタデータ) (2022-05-04T05:42:23Z) - Spatial-Temporal Hypergraph Self-Supervised Learning for Crime
Prediction [60.508960752148454]
本研究では,犯罪予測におけるラベル不足問題に対処する空間的ハイパーグラフ自己監視学習フレームワークを提案する。
都市空間全体における犯罪の地域的依存性をエンコードするクロスリージョンハイパーグラフ構造学習を提案する。
また,2段階の自己指導型学習パラダイムを設計し,局所的・世界的空間的犯罪パターンを共同で捉えるだけでなく,地域的自己差別の強化による疎犯罪表現を補う。
論文 参考訳(メタデータ) (2022-04-18T23:46:01Z) - A Machine learning approach for rapid disaster response based on
multi-modal data. The case of housing & shelter needs [0.0]
災害に遭った人々の最も直接的なニーズの1つは避難所を見つけることである。
本稿では,マルチモーダルデータの融合と解析を目的とした機械学習ワークフローを提案する。
世界中の200以上の災害に対する19の特徴のデータベースに基づいて、意思決定レベルでの融合アプローチが用いられた。
論文 参考訳(メタデータ) (2021-07-29T18:22:34Z) - The effect of differential victim crime reporting on predictive policing
systems [84.86615754515252]
本研究では, 被害者の犯罪報告率の違いが, 共通犯罪ホットスポット予測モデルにおいて, 結果の相違をもたらすことを示す。
以上の結果から, 犯罪報告率の差は, 高犯罪から低犯罪へ, 高犯罪・中犯罪・高報道へ, 予測ホットスポットの移動につながる可能性が示唆された。
論文 参考訳(メタデータ) (2021-01-30T01:57:22Z) - Evaluating the Safety of Deep Reinforcement Learning Models using
Semi-Formal Verification [81.32981236437395]
本稿では,区間分析に基づく半形式的意思決定手法を提案する。
本手法は, 標準ベンチマークに比較して, 形式検証に対して比較結果を得る。
提案手法は, 意思決定モデルにおける安全性特性を効果的に評価することを可能にする。
論文 参考訳(メタデータ) (2020-10-19T11:18:06Z) - Multi-officer Routing for Patrolling High Risk Areas Jointly Learned
from Check-ins, Crime and Incident Response Data [6.295207672539996]
我々は、チェックイン、犯罪、インシデント対応データ、およびPOI情報を用いて、複数の警察官に対する動的犯罪パトロール計画問題を定式化する。
本稿では,可能解の表現のための共同学習法と非ランダム最適化法を提案する。
提案手法の性能検証と実世界のデータセットを用いたいくつかの最先端手法との比較を行った。
論文 参考訳(メタデータ) (2020-07-31T23:33:14Z) - A Comparative Study on Crime in Denver City Based on Machine Learning
and Data Mining [0.0]
2014年1月から2019年5月まで、アメリカ合衆国デンバー郡の現実の犯罪と事故のデータセットを分析した。
本研究の目的は、法執行機関や政府が予防措置の発見を支援することの見返りとして、発生の傾向を予測し、強調することである。
結果は、トレイン・テストの分割とk倍のクロスバリデーションという2つの一般的なテスト手法を使ってキャプチャされる。
論文 参考訳(メタデータ) (2020-01-09T01:36:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。