論文の概要: Calibrated Multivariate Regression with Localized PIT Mappings
- arxiv url: http://arxiv.org/abs/2409.10855v1
- Date: Tue, 17 Sep 2024 02:41:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 18:06:56.146968
- Title: Calibrated Multivariate Regression with Localized PIT Mappings
- Title(参考訳): 局所PITマッピングを用いた校正多変量回帰
- Authors: Lucas Kock, G. S. Rodrigues, Scott A. Sisson, Nadja Klein, David J. Nott,
- Abstract要約: 本稿では,多変量キャリブレーションに対処するポストホックリカレーション手法を提案する。
このアプローチの2つのバージョンを示す: 1つはK-アネレスト近傍を使い、もう1つは正規化フローを使用する。
本研究では,インドにおける小児栄養失調の回帰モデルの改善と,深層ニューラルネットワークの通貨為替レート予測の緩和という,2つの実データ応用に対するアプローチの有効性を実証する。
- 参考スコア(独自算出の注目度): 4.277516034244117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Calibration ensures that predicted uncertainties align with observed uncertainties. While there is an extensive literature on recalibration methods for univariate probabilistic forecasts, work on calibration for multivariate forecasts is much more limited. This paper introduces a novel post-hoc recalibration approach that addresses multivariate calibration for potentially misspecified models. Our method involves constructing local mappings between vectors of marginal probability integral transform values and the space of observations, providing a flexible and model free solution applicable to continuous, discrete, and mixed responses. We present two versions of our approach: one uses K-nearest neighbors, and the other uses normalizing flows. Each method has its own strengths in different situations. We demonstrate the effectiveness of our approach on two real data applications: recalibrating a deep neural network's currency exchange rate forecast and improving a regression model for childhood malnutrition in India for which the multivariate response has both discrete and continuous components.
- Abstract(参考訳): 校正は、予測された不確実性が観測された不確実性と一致することを保証する。
単変量確率予測の校正手法に関する広範な文献があるが、多変量予測の校正に関する研究はより限定的である。
本稿では,多変量キャリブレーションに対処するポストホックリカレーション手法を提案する。
提案手法は,限界確率積分変換値のベクトルと観測空間の間の局所写像を構築し,連続的,離散的,混合的な応答に適用可能なフレキシブルでモデルのない解を提供する。
このアプローチの2つのバージョンを示す: 1つはK-アネレスト近傍を使い、もう1つは正規化フローを使用する。
それぞれの手法は異なる状況において独自の強みを持つ。
深層ニューラルネットワークの通貨為替レート予測の再検討と,多変量応答が離散成分と連続成分の両方を持つインドにおける幼児栄養失調の回帰モデルの改善という,2つの実データ応用に対するアプローチの有効性を実証する。
関連論文リスト
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Robust scalable initialization for Bayesian variational inference with
multi-modal Laplace approximations [0.0]
フル共分散構造を持つ変分混合は、パラメータ数による変動パラメータによる二次的な成長に苦しむ。
本稿では,変分推論のウォームスタートに使用できる初期ガウスモデル近似を構築する方法を提案する。
論文 参考訳(メタデータ) (2023-07-12T19:30:04Z) - Generative machine learning methods for multivariate ensemble
post-processing [2.266704492832475]
生成機械学習に基づく非パラメトリックなデータ駆動分散回帰モデルを提案する。
2つのケーススタディにおいて、我々の生成モデルは最先端の手法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2022-09-26T09:02:30Z) - Robust Calibration with Multi-domain Temperature Scaling [86.07299013396059]
我々は,複数の領域からのデータを活用することで,分散シフトを処理するシステムキャリブレーションモデルを開発した。
提案手法は,分布シフト時のキャリブレーションを改善するために,領域内のロバスト性を利用する。
論文 参考訳(メタデータ) (2022-06-06T17:32:12Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
このアルゴリズムは、異なるモードの適応的統合の原理における不確かさを効率的に推定し、信頼できる回帰結果を生成する。
実世界のデータと実世界のデータの両方に対する実験結果から,多モード回帰タスクにおける本手法の有効性と信頼性が示された。
論文 参考訳(メタデータ) (2021-11-11T14:28:12Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
多変量予測分布の条件パラメータを非パラメトリックにモデル化したNatural Gradient Boosting (NGBoost) 手法を提案する。
提案手法は頑健で, 広範囲なチューニングを伴わず, 推定対象分布に対してモジュール構造であり, 既存の手法と比較して競争力がある。
論文 参考訳(メタデータ) (2021-06-07T17:44:49Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Calibration of Neural Networks using Splines [51.42640515410253]
キャリブレーション誤差の測定は、2つの経験的分布を比較します。
古典的コルモゴロフ・スミルノフ統計テスト(KS)にインスパイアされたビンニングフリーキャリブレーション尺度を導入する。
提案手法は,KS誤差に対する既存の手法と,他の一般的なキャリブレーション手法とを一貫して比較する。
論文 参考訳(メタデータ) (2020-06-23T07:18:05Z) - Variational Variance: Simple, Reliable, Calibrated Heteroscedastic Noise
Variance Parameterization [3.553493344868413]
本稿では,予測平均と分散キャリブレーションを検証し,予測分布が有意義なデータを生成する能力を評価するための批評を提案する。
ヘテロセダスティックな分散を多変量に処理するためには、これらのPPCを通過させるために分散を十分に規則化する必要がある。
論文 参考訳(メタデータ) (2020-06-08T19:58:35Z) - Quantile Regularization: Towards Implicit Calibration of Regression
Models [30.872605139672086]
2つのCDF間の累積KL分散として定義される新しい量子正規化器に基づく回帰モデルの校正法を提案する。
提案手法は,Dropout VI や Deep Ensembles といった手法を用いて学習した回帰モデルのキャリブレーションを大幅に改善することを示す。
論文 参考訳(メタデータ) (2020-02-28T16:53:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。