論文の概要: SkinMamba: A Precision Skin Lesion Segmentation Architecture with Cross-Scale Global State Modeling and Frequency Boundary Guidance
- arxiv url: http://arxiv.org/abs/2409.10890v1
- Date: Tue, 17 Sep 2024 05:02:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 17:48:51.798990
- Title: SkinMamba: A Precision Skin Lesion Segmentation Architecture with Cross-Scale Global State Modeling and Frequency Boundary Guidance
- Title(参考訳): SkinMamba: クロススケールグローバルステートモデリングと周波数境界ガイダンスを備えた高精度皮膚病変分割アーキテクチャ
- Authors: Shun Zou, Mingya Zhang, Bingjian Fan, Zhengyi Zhou, Xiuguo Zou,
- Abstract要約: 皮膚病変のセグメンテーションは早期皮膚癌を同定するための重要な方法である。
我々は、SkinMambaと呼ばれるMambaとCNNをベースとしたハイブリッドアーキテクチャを提案する。
強力な長距離依存性モデリングとローカル機能抽出機能を提供しながら、線形複雑性を維持している。
- 参考スコア(独自算出の注目度): 0.559239450391449
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Skin lesion segmentation is a crucial method for identifying early skin cancer. In recent years, both convolutional neural network (CNN) and Transformer-based methods have been widely applied. Moreover, combining CNN and Transformer effectively integrates global and local relationships, but remains limited by the quadratic complexity of Transformer. To address this, we propose a hybrid architecture based on Mamba and CNN, called SkinMamba. It maintains linear complexity while offering powerful long-range dependency modeling and local feature extraction capabilities. Specifically, we introduce the Scale Residual State Space Block (SRSSB), which captures global contextual relationships and cross-scale information exchange at a macro level, enabling expert communication in a global state. This effectively addresses challenges in skin lesion segmentation related to varying lesion sizes and inconspicuous target areas. Additionally, to mitigate boundary blurring and information loss during model downsampling, we introduce the Frequency Boundary Guided Module (FBGM), providing sufficient boundary priors to guide precise boundary segmentation, while also using the retained information to assist the decoder in the decoding process. Finally, we conducted comparative and ablation experiments on two public lesion segmentation datasets (ISIC2017 and ISIC2018), and the results demonstrate the strong competitiveness of SkinMamba in skin lesion segmentation tasks. The code is available at https://github.com/zs1314/SkinMamba.
- Abstract(参考訳): 皮膚病変のセグメンテーションは早期皮膚癌を同定するための重要な方法である。
近年,畳み込みニューラルネットワーク(CNN)とTransformerベースの手法が広く採用されている。
さらに、CNNとTransformerの組み合わせは、グローバルな関係とローカルな関係を効果的に統合するが、Transformerの二次的な複雑さによって制限される。
そこで我々は,SkinMamba という,Mamba と CNN をベースとしたハイブリッドアーキテクチャを提案する。
強力な長距離依存性モデリングとローカル機能抽出機能を提供しながら、線形複雑性を維持している。
具体的には、グローバルなコンテキスト関係とマクロレベルでのクロススケール情報交換をキャプチャし、グローバルな状態における専門家のコミュニケーションを可能にするSRSSB(Scale Residual State Space Block)を提案する。
皮膚病変の分節化は, 病変の大きさや不明瞭な対象領域に関連する課題を効果的に解決する。
さらに、モデルダウンサンプリング時の境界のぼかしや情報損失を軽減するために、デコーダの復号化を支援するために保持情報を使用しながら、正確な境界セグメンテーションを導くのに十分な境界条件を提供する周波数境界ガイドモジュール(FBGM)を導入する。
最後に,2つのパブリック病変セグメンテーションデータセット(ISIC2017とISIC2018)の比較およびアブレーション実験を行い,皮膚病変セグメンテーションタスクにおけるSkinMambaの強い競争性を示した。
コードはhttps://github.com/zs1314/SkinMambaで入手できる。
関連論文リスト
- TBConvL-Net: A Hybrid Deep Learning Architecture for Robust Medical Image Segmentation [6.013821375459473]
医用画像セグメンテーションのための新しいディープラーニングアーキテクチャを提案する。
提案モデルでは,10の公開データセット上でのテクニックの現状に対して,一貫した改善が示されている。
論文 参考訳(メタデータ) (2024-09-05T09:14:03Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Inter-Scale Dependency Modeling for Skin Lesion Segmentation with
Transformer-based Networks [0.0]
メラノーマは皮膚細胞の異常増殖によって引き起こされる皮膚がんの危険形態である。
U-Netアーキテクチャを含むFCNアプローチは、皮膚病変を自動的に分割して診断を支援する。
対称的U-Netモデルは優れた結果を示しているが、畳み込み演算を用いることで、長距離依存を捕捉する能力は制限されている。
論文 参考訳(メタデータ) (2023-10-20T16:20:25Z) - Skin Lesion Segmentation Improved by Transformer-based Networks with
Inter-scale Dependency Modeling [0.0]
メラノーマは異常な皮膚細胞増殖に起因する皮膚癌の一種である。
対称的U-Netモデルの畳み込み操作への依存は、長距離依存をキャプチャする能力を妨げている。
この制限を克服するために、TransformerベースのいくつかのU-Netトポロジが最近作成されている。
論文 参考訳(メタデータ) (2023-10-20T15:53:51Z) - Generative Adversarial Networks based Skin Lesion Segmentation [7.9234173309439715]
本稿では, 教師なし生成ネットワークを用いて正確な病変マスクを生成する, Efficient-GAN という新たな逆学習基盤を提案する。
Dice係数、Jaccard類似度、精度はそれぞれ90.1%、83.6%、94.5%である。
また,EGANと同等の性能を持つ軽量セグメンテーションフレームワーク(MGAN)を設計する。
論文 参考訳(メタデータ) (2023-05-29T15:51:31Z) - Adaptive Context Selection for Polyp Segmentation [99.9959901908053]
本稿では,ローカルコンテキストアテンション(LCA)モジュール,グローバルコンテキストモジュール(GCM)モジュール,適応選択モジュール(ASM)モジュールで構成される適応コンテキスト選択に基づくエンコーダデコーダフレームワークを提案する。
LCAモジュールは、エンコーダ層からデコーダ層へローカルなコンテキスト機能を提供する。
GCMは、グローバルなコンテキストの特徴をさらに探求し、デコーダ層に送信することを目的としている。ASMは、チャンネルワイドアテンションを通じて、コンテキスト特徴の適応的選択と集約に使用される。
論文 参考訳(メタデータ) (2023-01-12T04:06:44Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
医用画像セグメンテーションのためのトランスフォーマーベースUNetを提案する。
グローバルな意味情報と局所的な空間的詳細特徴を同時に学習する。
MISSUは従来の最先端手法よりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2022-06-02T07:38:53Z) - XBound-Former: Toward Cross-scale Boundary Modeling in Transformers [11.979700468758313]
そこで本研究では, 皮膚病変の分節変化と境界問題に対処するため, クロススケールな境界対応トランス (textbfXBound-Former) を提案する。
XBound-Formerは、純粋に注意に基づくネットワークであり、3つの特別に設計された学習者を通して境界知識をキャッチする。
我々は、ISIC-2016&PH$2とISIC-2018の2つの皮膚病変データセットでモデルを評価する。
論文 参考訳(メタデータ) (2022-06-02T00:24:52Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
医用画像のセグメンテーションは医療システムの開発に必須の前提条件である。
様々な医療画像セグメンテーションタスクにおいて、U-Netとして知られるu字型アーキテクチャがデファクトスタンダードとなっている。
医用画像セグメンテーションの強力な代替手段として,トランスフォーマーとU-Netの両方を有効活用するTransUNetを提案する。
論文 参考訳(メタデータ) (2021-02-08T16:10:50Z) - DONet: Dual Objective Networks for Skin Lesion Segmentation [77.9806410198298]
本稿では,皮膚病変のセグメンテーションを改善するために,Dual Objective Networks (DONet) という,シンプルで効果的なフレームワークを提案する。
我々のDONetは2つの対称デコーダを採用し、異なる目標に近づくための異なる予測を生成する。
皮膚内視鏡画像における多種多様な病変のスケールと形状の課題に対処するために,再帰的コンテキスト符号化モジュール(RCEM)を提案する。
論文 参考訳(メタデータ) (2020-08-19T06:02:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。