SkinMamba: A Precision Skin Lesion Segmentation Architecture with Cross-Scale Global State Modeling and Frequency Boundary Guidance
- URL: http://arxiv.org/abs/2409.10890v1
- Date: Tue, 17 Sep 2024 05:02:38 GMT
- Title: SkinMamba: A Precision Skin Lesion Segmentation Architecture with Cross-Scale Global State Modeling and Frequency Boundary Guidance
- Authors: Shun Zou, Mingya Zhang, Bingjian Fan, Zhengyi Zhou, Xiuguo Zou,
- Abstract summary: Skin lesion segmentation is a crucial method for identifying early skin cancer.
We propose a hybrid architecture based on Mamba and CNN, called SkinMamba.
It maintains linear complexity while offering powerful long-range dependency modeling and local feature extraction capabilities.
- Score: 0.559239450391449
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Skin lesion segmentation is a crucial method for identifying early skin cancer. In recent years, both convolutional neural network (CNN) and Transformer-based methods have been widely applied. Moreover, combining CNN and Transformer effectively integrates global and local relationships, but remains limited by the quadratic complexity of Transformer. To address this, we propose a hybrid architecture based on Mamba and CNN, called SkinMamba. It maintains linear complexity while offering powerful long-range dependency modeling and local feature extraction capabilities. Specifically, we introduce the Scale Residual State Space Block (SRSSB), which captures global contextual relationships and cross-scale information exchange at a macro level, enabling expert communication in a global state. This effectively addresses challenges in skin lesion segmentation related to varying lesion sizes and inconspicuous target areas. Additionally, to mitigate boundary blurring and information loss during model downsampling, we introduce the Frequency Boundary Guided Module (FBGM), providing sufficient boundary priors to guide precise boundary segmentation, while also using the retained information to assist the decoder in the decoding process. Finally, we conducted comparative and ablation experiments on two public lesion segmentation datasets (ISIC2017 and ISIC2018), and the results demonstrate the strong competitiveness of SkinMamba in skin lesion segmentation tasks. The code is available at https://github.com/zs1314/SkinMamba.
Related papers
- TBConvL-Net: A Hybrid Deep Learning Architecture for Robust Medical Image Segmentation [6.013821375459473]
We introduce a novel deep learning architecture for medical image segmentation.
Our proposed model shows consistent improvement over the state of the art on ten publicly available datasets.
arXiv Detail & Related papers (2024-09-05T09:14:03Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Inter-Scale Dependency Modeling for Skin Lesion Segmentation with
Transformer-based Networks [0.0]
Melanoma is a dangerous form of skin cancer caused by the abnormal growth of skin cells.
FCN approaches, including the U-Net architecture, can automatically segment skin lesions to aid diagnosis.
The symmetrical U-Net model has shown outstanding results, but its use of a convolutional operation limits its ability to capture long-range dependencies.
arXiv Detail & Related papers (2023-10-20T16:20:25Z) - Skin Lesion Segmentation Improved by Transformer-based Networks with
Inter-scale Dependency Modeling [0.0]
Melanoma is a dangerous type of skin cancer resulting from abnormal skin cell growth.
The symmetrical U-Net model's reliance on convolutional operations hinders its ability to capture long-range dependencies.
Several Transformer-based U-Net topologies have recently been created to overcome this limitation.
arXiv Detail & Related papers (2023-10-20T15:53:51Z) - Generative Adversarial Networks based Skin Lesion Segmentation [7.9234173309439715]
We propose a novel adversarial learning-based framework called Efficient-GAN that uses an unsupervised generative network to generate accurate lesion masks.
It outperforms the current state-of-the-art skin lesion segmentation approaches with a Dice coefficient, Jaccard similarity, and Accuracy of 90.1%, 83.6%, and 94.5%, respectively.
We also design a lightweight segmentation framework (MGAN) that achieves comparable performance as EGAN but with an order of magnitude lower number of training parameters.
arXiv Detail & Related papers (2023-05-29T15:51:31Z) - Adaptive Context Selection for Polyp Segmentation [99.9959901908053]
We propose an adaptive context selection based encoder-decoder framework which is composed of Local Context Attention (LCA) module, Global Context Module (GCM) and Adaptive Selection Module (ASM)
LCA modules deliver local context features from encoder layers to decoder layers, enhancing the attention to the hard region which is determined by the prediction map of previous layer.
GCM aims to further explore the global context features and send to the decoder layers. ASM is used for adaptive selection and aggregation of context features through channel-wise attention.
arXiv Detail & Related papers (2023-01-12T04:06:44Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
We propose to self-distill a Transformer-based UNet for medical image segmentation.
It simultaneously learns global semantic information and local spatial-detailed features.
Our MISSU achieves the best performance over previous state-of-the-art methods.
arXiv Detail & Related papers (2022-06-02T07:38:53Z) - XBound-Former: Toward Cross-scale Boundary Modeling in Transformers [11.979700468758313]
We propose a novel cross-scale boundary-aware transformer, textbfXBound-Former, to address the variation and boundary problems of skin lesion segmentation.
XBound-Former is a purely attention-based network and catches boundary knowledge via three specially designed learners.
We evaluate the model on two skin lesion datasets, ISIC-2016&PH$2$ and ISIC-2018, where our model consistently outperforms other convolution- and transformer-based models.
arXiv Detail & Related papers (2022-06-02T00:24:52Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
Medical image segmentation is an essential prerequisite for developing healthcare systems.
On various medical image segmentation tasks, the u-shaped architecture, also known as U-Net, has become the de-facto standard.
We propose TransUNet, which merits both Transformers and U-Net, as a strong alternative for medical image segmentation.
arXiv Detail & Related papers (2021-02-08T16:10:50Z) - DONet: Dual Objective Networks for Skin Lesion Segmentation [77.9806410198298]
We propose a simple yet effective framework, named Dual Objective Networks (DONet), to improve the skin lesion segmentation.
Our DONet adopts two symmetric decoders to produce different predictions for approaching different objectives.
To address the challenge of large variety of lesion scales and shapes in dermoscopic images, we additionally propose a recurrent context encoding module (RCEM)
arXiv Detail & Related papers (2020-08-19T06:02:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.