論文の概要: RoadRunner M&M -- Learning Multi-range Multi-resolution Traversability Maps for Autonomous Off-road Navigation
- arxiv url: http://arxiv.org/abs/2409.10940v1
- Date: Tue, 17 Sep 2024 07:21:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 17:38:43.631520
- Title: RoadRunner M&M -- Learning Multi-range Multi-resolution Traversability Maps for Autonomous Off-road Navigation
- Title(参考訳): RoadRunner M&M -- 自律オフロードナビゲーションのためのマルチレンジマルチ解像度トラバーサビリティマップの学習
- Authors: Manthan Patel, Jonas Frey, Deegan Atha, Patrick Spieler, Marco Hutter, Shehryar Khattak,
- Abstract要約: RoadRunner (M&M) はエンドツーエンドの学習ベースのフレームワークで、さまざまな範囲のトレーバービリティと標高マップを直接予測する。
RoadRunner M&Mは、標高マッピングで最大50%の大幅な改善と、RoadRunner上でのトラバーサビリティ推定で30%の大幅な改善を実現している。
- 参考スコア(独自算出の注目度): 12.835198004089385
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous robot navigation in off-road environments requires a comprehensive understanding of the terrain geometry and traversability. The degraded perceptual conditions and sparse geometric information at longer ranges make the problem challenging especially when driving at high speeds. Furthermore, the sensing-to-mapping latency and the look-ahead map range can limit the maximum speed of the vehicle. Building on top of the recent work RoadRunner, in this work, we address the challenge of long-range (100 m) traversability estimation. Our RoadRunner (M&M) is an end-to-end learning-based framework that directly predicts the traversability and elevation maps at multiple ranges (50 m, 100 m) and resolutions (0.2 m, 0.8 m) taking as input multiple images and a LiDAR voxel map. Our method is trained in a self-supervised manner by leveraging the dense supervision signal generated by fusing predictions from an existing traversability estimation stack (X-Racer) in hindsight and satellite Digital Elevation Maps. RoadRunner M&M achieves a significant improvement of up to 50% for elevation mapping and 30% for traversability estimation over RoadRunner, and is able to predict in 30% more regions compared to X-Racer while achieving real-time performance. Experiments on various out-of-distribution datasets also demonstrate that our data-driven approach starts to generalize to novel unstructured environments. We integrate our proposed framework in closed-loop with the path planner to demonstrate autonomous high-speed off-road robotic navigation in challenging real-world environments. Project Page: https://leggedrobotics.github.io/roadrunner_mm/
- Abstract(参考訳): オフロード環境での自律型ロボットナビゲーションは、地形の幾何学と移動可能性に関する包括的理解を必要とする。
劣化した知覚条件とより長い範囲の幾何学的情報により、特に高速運転時の問題に挑戦する。
さらに、センサ・ツー・マッピングのレイテンシとルック・アヘッドマップの範囲は、車両の最大速度を制限することができる。
先日のRoadRunnerの上に構築されたこの作業では,長距離(100m)の可逆性推定の課題に対処する。
Our RoadRunner (M&M) は,複数範囲 (50m, 100m) および解像度 (0.2m, 0.8m) で,入力された複数の画像とLiDARボクセルマップを直接予測する,エンドツーエンドの学習ベースフレームワークである。
本手法は,後方および衛星デジタル標高マップにおいて,既存の走行可能性推定スタック(X-Racer)からの予測を融合させることにより発生する密集した監視信号を利用して,自己監督的な訓練を行う。
RoadRunner M&Mは、高度マッピングで最大50%、RoadRunner上でのトラバーサビリティ推定で30%の大幅な改善を実現し、リアルタイムのパフォーマンスを達成しながら、X-Racerと比較して30%以上のリージョンを予測できる。
様々なアウト・オブ・ディストリビューションデータセットの実験では、私たちのデータ駆動アプローチが、新しい非構造化環境に一般化し始めています。
提案するフレームワークをクローズドループに統合し,実環境における自律型高速オフロードロボットナビゲーションを実証する。
Project Page: https://leggedrobotics.github.io/roadrunner_mm/
関連論文リスト
- ROAD-Waymo: Action Awareness at Scale for Autonomous Driving [17.531603453254434]
ROAD-Waymoは、道路シーンにおけるエージェント、アクション、位置、イベント検出の技術の開発とベンチマークのための広範なデータセットである。
既存のデータセット(および複数の都市を含む)よりもかなり大きく、より困難なものには、198kの注釈付きビデオフレーム、54kのエージェントチューブ、3.9Mのバウンディングボックス、合計12.4Mのラベルがある。
論文 参考訳(メタデータ) (2024-11-03T20:46:50Z) - Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
本稿では,道路環境のコヒーレントな地図を作成するために,車両群から収集した局所部分写像を中心インスタンスに融合するマッピングシステムを提案する。
本手法は,シーン特異的なニューラルサイン距離場を用いて,雑音と不完全局所部分写像を併用する。
我々は,記憶効率の高いスパース機能グリッドを活用して大規模にスケールし,シーン再構築における不確実性をモデル化するための信頼スコアを導入する。
論文 参考訳(メタデータ) (2024-10-10T10:10:03Z) - RoadRunner -- Learning Traversability Estimation for Autonomous Off-road Driving [13.101416329887755]
我々は、カメラとLiDARセンサーの入力から直接地形変動を予測できるフレームワークであるRoadRunnerと、標高マップを提示する。
RoadRunnerは、センサ情報、不確実性の処理、コンテキスト情報による予測の生成を融合させることで、信頼性の高い自律ナビゲーションを可能にする。
我々は,非構造砂漠環境を通した複数の現実の運転シナリオにおいて,安全かつ信頼性の高いオフロードナビゲーションを実現する上で,ロードランナーの有効性を実証する。
論文 参考訳(メタデータ) (2024-02-29T16:47:54Z) - Pixel to Elevation: Learning to Predict Elevation Maps at Long Range using Images for Autonomous Offroad Navigation [10.898724668444125]
本稿では,車載エゴセントリック画像のみをリアルタイムに利用して,長距離の地形標高マップを予測できる学習型アプローチを提案する。
複雑で非構造的な地形における自律型オフロードロボットナビゲーションへの提案手法の適用性を実験的に検証した。
論文 参考訳(メタデータ) (2024-01-30T22:37:24Z) - RSRD: A Road Surface Reconstruction Dataset and Benchmark for Safe and
Comfortable Autonomous Driving [67.09546127265034]
道路表面の再構築は、車両の走行計画と制御システムの解析と予測を促進するのに役立つ。
我々は,様々な運転条件下で,特定のプラットフォームで収集した実世界,高解像度,高精度のデータセットであるRoad Surface Reconstructionデータセットを紹介した。
約16,000対のステレオ画像、原点雲、地中深度・不均等地図を含む一般的な道路形態を網羅している。
論文 参考訳(メタデータ) (2023-10-03T17:59:32Z) - How Does It Feel? Self-Supervised Costmap Learning for Off-Road Vehicle
Traversability [7.305104984234086]
オフロード環境における地形の移動性の推定には、ロボットとこれらの地形の間の複雑な相互作用のダイナミクスを推論する必要がある。
本研究では,外外環境情報と固有地形相互作用フィードバックを組み合わせることで,トラバーサビリティのコストマップを予測する手法を提案する。
論文 参考訳(メタデータ) (2022-09-22T05:18:35Z) - Incremental 3D Scene Completion for Safe and Efficient Exploration
Mapping and Planning [60.599223456298915]
本研究では,情報,安全,解釈可能な地図作成と計画に3次元シーン補完を活用することによって,深層学習を探索に統合する新しい手法を提案する。
本手法は,地図の精度を最小限に抑えることで,ベースラインに比べて環境のカバレッジを73%高速化できることを示す。
最終地図にシーン完了が含まれていなくても、ロボットがより情報的な経路を選択するように誘導し、ロボットのセンサーでシーンの測定を35%高速化できることが示される。
論文 参考訳(メタデータ) (2022-08-17T14:19:33Z) - ViKiNG: Vision-Based Kilometer-Scale Navigation with Geographic Hints [94.60414567852536]
長距離航法には、計画と局所的な移動可能性の推論の両方が必要である。
学習と計画を統合する学習に基づくアプローチを提案する。
ViKiNGは、画像ベースの学習コントローラを利用できる。
論文 参考訳(メタデータ) (2022-02-23T02:14:23Z) - MP3: A Unified Model to Map, Perceive, Predict and Plan [84.07678019017644]
MP3は、入力が生のセンサーデータと高レベルのコマンドであるマップレス運転に対するエンドツーエンドのアプローチである。
提案手法は, より安全で, 快適であり, 長期クローズループシミュレーションにおいて, ベースラインよりもコマンドを追従できることを示す。
論文 参考訳(メタデータ) (2021-01-18T00:09:30Z) - Convolutional Recurrent Network for Road Boundary Extraction [99.55522995570063]
我々は,LiDARとカメラ画像からの道路境界抽出の問題に取り組む。
我々は,完全畳み込みネットワークが道路境界の位置と方向をエンコードする深い特徴量を得る構造化モデルを設計する。
北米の大都市において,道路境界の完全なトポロジを99.3%の時間で得られる方法の有効性を示す。
論文 参考訳(メタデータ) (2020-12-21T18:59:12Z) - LaNet: Real-time Lane Identification by Learning Road
SurfaceCharacteristics from Accelerometer Data [12.334058883768977]
我々は,車線車両が乗っている車線を周期的に分類し,LSTMニューラルネットワークモデルであるLaNetを開発した。
LaNetは、路面イベント(バンプ、ひび割れなど)のレーン固有のシーケンスを学習し、200mの運転データで100%レーン分類精度を得る。
論文 参考訳(メタデータ) (2020-04-06T17:09:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。