論文の概要: How Does It Feel? Self-Supervised Costmap Learning for Off-Road Vehicle
Traversability
- arxiv url: http://arxiv.org/abs/2209.10788v1
- Date: Thu, 22 Sep 2022 05:18:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-23 14:36:02.925988
- Title: How Does It Feel? Self-Supervised Costmap Learning for Off-Road Vehicle
Traversability
- Title(参考訳): 気分はどうですか。
オフロード車両トラバーサビリティのための自己教師付きコストマップ学習
- Authors: Mateo Guaman Castro, Samuel Triest, Wenshan Wang, Jason M. Gregory,
Felix Sanchez, John G. Rogers III, Sebastian Scherer
- Abstract要約: オフロード環境における地形の移動性の推定には、ロボットとこれらの地形の間の複雑な相互作用のダイナミクスを推論する必要がある。
本研究では,外外環境情報と固有地形相互作用フィードバックを組み合わせることで,トラバーサビリティのコストマップを予測する手法を提案する。
- 参考スコア(独自算出の注目度): 7.305104984234086
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimating terrain traversability in off-road environments requires reasoning
about complex interaction dynamics between the robot and these terrains.
However, it is challenging to build an accurate physics model, or create
informative labels to learn a model in a supervised manner, for these
interactions. We propose a method that learns to predict traversability
costmaps by combining exteroceptive environmental information with
proprioceptive terrain interaction feedback in a self-supervised manner.
Additionally, we propose a novel way of incorporating robot velocity in the
costmap prediction pipeline. We validate our method in multiple short and
large-scale navigation tasks on a large, autonomous all-terrain vehicle (ATV)
on challenging off-road terrains, and demonstrate ease of integration on a
separate large ground robot. Our short-scale navigation results show that using
our learned costmaps leads to overall smoother navigation, and provides the
robot with a more fine-grained understanding of the interactions between the
robot and different terrain types, such as grass and gravel. Our large-scale
navigation trials show that we can reduce the number of interventions by up to
57% compared to an occupancy-based navigation baseline in challenging off-road
courses ranging from 400 m to 3150 m.
- Abstract(参考訳): オフロード環境における地形トラバーサビリティの推定には、ロボットとこれらの地形との複雑な相互作用のダイナミクスに関する推論が必要である。
しかし、正確な物理モデルの構築や、これらの相互作用のために教師付き方法でモデルを学ぶための情報ラベルの作成は困難である。
本研究では,外来環境情報と固有地形相互作用フィードバックを自己管理的に組み合わせて,トラバーサビリティのコストマップを予測する手法を提案する。
さらに,コストマップ予測パイプラインにロボットの速度を組み込む新しい手法を提案する。
本手法は,大規模・自律型全地形車両 (atv) における複数の短時間・大規模ナビゲーションタスクで検証し,個別の大型地上ロボットへの統合が容易であることを示す。
短時間のナビゲーションの結果から、学習したコストマップを使うことで、よりスムースなナビゲーションが可能になり、ロボットがロボットと草や砂利といった異なる地形の相互作用をより詳細に理解できるようになります。
大規模ナビゲーション試験の結果,400mから3150mまでの課題オフロードコースにおいて,居住ベースのナビゲーションベースラインと比較して,介入回数を最大57%削減できることが分かった。
関連論文リスト
- RoadRunner M&M -- Learning Multi-range Multi-resolution Traversability Maps for Autonomous Off-road Navigation [12.835198004089385]
RoadRunner (M&M) はエンドツーエンドの学習ベースのフレームワークで、さまざまな範囲のトレーバービリティと標高マップを直接予測する。
RoadRunner M&Mは、標高マッピングで最大50%の大幅な改善と、RoadRunner上でのトラバーサビリティ推定で30%の大幅な改善を実現している。
論文 参考訳(メタデータ) (2024-09-17T07:21:03Z) - RoadRunner -- Learning Traversability Estimation for Autonomous Off-road Driving [13.101416329887755]
我々は、カメラとLiDARセンサーの入力から直接地形変動を予測できるフレームワークであるRoadRunnerと、標高マップを提示する。
RoadRunnerは、センサ情報、不確実性の処理、コンテキスト情報による予測の生成を融合させることで、信頼性の高い自律ナビゲーションを可能にする。
我々は,非構造砂漠環境を通した複数の現実の運転シナリオにおいて,安全かつ信頼性の高いオフロードナビゲーションを実現する上で,ロードランナーの有効性を実証する。
論文 参考訳(メタデータ) (2024-02-29T16:47:54Z) - Pixel to Elevation: Learning to Predict Elevation Maps at Long Range using Images for Autonomous Offroad Navigation [10.898724668444125]
本稿では,車載エゴセントリック画像のみをリアルタイムに利用して,長距離の地形標高マップを予測できる学習型アプローチを提案する。
複雑で非構造的な地形における自律型オフロードロボットナビゲーションへの提案手法の適用性を実験的に検証した。
論文 参考訳(メタデータ) (2024-01-30T22:37:24Z) - Fast Traversability Estimation for Wild Visual Navigation [17.015268056925745]
トラバーサビリティ推定のためのオンライン自己教師型学習システムであるWild Visual Navigation (WVN)を提案する。
このシステムは、現場での短い人間のデモから継続的に適応することができる。
森林・公園・草地における挑戦的環境における実験・アブレーション研究によるアプローチの利点を実証する。
論文 参考訳(メタデータ) (2023-05-15T10:19:30Z) - Incremental 3D Scene Completion for Safe and Efficient Exploration
Mapping and Planning [60.599223456298915]
本研究では,情報,安全,解釈可能な地図作成と計画に3次元シーン補完を活用することによって,深層学習を探索に統合する新しい手法を提案する。
本手法は,地図の精度を最小限に抑えることで,ベースラインに比べて環境のカバレッジを73%高速化できることを示す。
最終地図にシーン完了が含まれていなくても、ロボットがより情報的な経路を選択するように誘導し、ロボットのセンサーでシーンの測定を35%高速化できることが示される。
論文 参考訳(メタデータ) (2022-08-17T14:19:33Z) - ViKiNG: Vision-Based Kilometer-Scale Navigation with Geographic Hints [94.60414567852536]
長距離航法には、計画と局所的な移動可能性の推論の両方が必要である。
学習と計画を統合する学習に基づくアプローチを提案する。
ViKiNGは、画像ベースの学習コントローラを利用できる。
論文 参考訳(メタデータ) (2022-02-23T02:14:23Z) - Coupling Vision and Proprioception for Navigation of Legged Robots [65.59559699815512]
我々は視覚と受容の相補的な強みを利用して、脚のあるロボットでポイントゴールナビゲーションを実現する。
車輪付きロボット(LoCoBot)のベースラインよりも優れた性能を示す。
また,センサーと計算能力を備えた四足歩行ロボットに,我々のシステムを実環境に展開することも示す。
論文 参考訳(メタデータ) (2021-12-03T18:59:59Z) - Complex Terrain Navigation via Model Error Prediction [5.937673383513695]
私たちは、オンラインのアプローチでトレーニングを行い、その結果、シミュレーションと現実世界にまたがる、50分間のトレーニングデータを使用して、ナビゲーションポリシーを成功させました。
学習に基づくナビゲーションシステムは,Clearpath Huskyが様々な地形を航行する様子を実演する,効率的な短期プランナーである。
論文 参考訳(メタデータ) (2021-11-18T15:55:04Z) - Rapid Exploration for Open-World Navigation with Latent Goal Models [78.45339342966196]
多様なオープンワールド環境における自律的な探索とナビゲーションのためのロボット学習システムについて述べる。
本手法のコアとなるのは、画像の非パラメトリックトポロジカルメモリとともに、距離と行動の学習された潜在変数モデルである。
学習方針を規則化するために情報ボトルネックを使用し、(i)目標のコンパクトな視覚的表現、(ii)一般化能力の向上、(iii)探索のための実行可能な目標をサンプリングするためのメカニズムを提供する。
論文 参考訳(メタデータ) (2021-04-12T23:14:41Z) - Simultaneous Navigation and Construction Benchmarking Environments [73.0706832393065]
モバイル構築のためのインテリジェントなロボット、環境をナビゲートし、幾何学的設計に従ってその構造を変更するプロセスが必要です。
このタスクでは、ロボットのビジョンと学習の大きな課題は、GPSなしでデザインを正確に達成する方法です。
我々は,手工芸政策の性能を,基礎的なローカライゼーションと計画,最先端の深層強化学習手法を用いて評価した。
論文 参考訳(メタデータ) (2021-03-31T00:05:54Z) - BADGR: An Autonomous Self-Supervised Learning-Based Navigation System [158.6392333480079]
BadGRは、エンドツーエンドの学習ベースのモバイルロボットナビゲーションシステムである。
実際の環境で収集された、自己監督型のオフポリシーデータでトレーニングすることができる。
BadGRは、幾何学的に邪魔な障害物を伴って、現実世界の都市やオフロード環境をナビゲートすることができる。
論文 参考訳(メタデータ) (2020-02-13T18:40:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。