Control-flow Reconstruction Attacks on Business Process Models
- URL: http://arxiv.org/abs/2409.10986v1
- Date: Tue, 17 Sep 2024 08:42:55 GMT
- Title: Control-flow Reconstruction Attacks on Business Process Models
- Authors: Henrik Kirchmann, Stephan A. Fahrenkrog-Petersen, Felix Mannhardt, Matthias Weidlich,
- Abstract summary: This work is the first to empirically investigate such reconstruction attempts based on process models.
We propose different play-out strategies that reconstruct the control-flow from process trees, potentially exploiting frequency annotations.
- Score: 3.5602253012485656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Process models may be automatically generated from event logs that contain as-is data of a business process. While such models generalize over the control-flow of specific, recorded process executions, they are often also annotated with behavioural statistics, such as execution frequencies.Based thereon, once a model is published, certain insights about the original process executions may be reconstructed, so that an external party may extract confidential information about the business process. This work is the first to empirically investigate such reconstruction attempts based on process models. To this end, we propose different play-out strategies that reconstruct the control-flow from process trees, potentially exploiting frequency annotations. To assess the potential success of such reconstruction attacks on process models, and hence the risks imposed by publishing them, we compare the reconstructed process executions with those of the original log for several real-world datasets.
Related papers
- A Reference Model and Patterns for Production Event Data Enrichment [0.0]
We introduce a reference model and a collection of patterns designed to enrich production event data.<n>The reference model provides a standard way for storing and extracting production event data.<n>The patterns are developed based on empirical observations from event data sets originating in manufacturing processes.
arXiv Detail & Related papers (2025-06-13T06:58:25Z) - AgentSimulator: An Agent-based Approach for Data-driven Business Process Simulation [6.590869939300887]
Business process simulation (BPS) is a versatile technique for estimating process performance across various scenarios.
This paper introduces AgentSimulator, a resource-first BPS approach that discovers a multi-agent system from an event log.
Our experiments show that AgentSimulator achieves computation state-of-the-art simulation accuracy with significantly lower times than existing approaches.
arXiv Detail & Related papers (2024-08-16T07:19:11Z) - Mining Constraints from Reference Process Models for Detecting Best-Practice Violations in Event Log [1.389948527681755]
We propose a framework for mining declarative best-practice constraints from a reference model collection.
We demonstrate the capability of our framework to detect best-practice violations through an evaluation based on real-world process model collections and event logs.
arXiv Detail & Related papers (2024-07-02T15:05:37Z) - Detecting Anomalous Events in Object-centric Business Processes via
Graph Neural Networks [55.583478485027]
This study proposes a novel framework for anomaly detection in business processes.
We first reconstruct the process dependencies of the object-centric event logs as attributed graphs.
We then employ a graph convolutional autoencoder architecture to detect anomalous events.
arXiv Detail & Related papers (2024-02-14T14:17:56Z) - Inter-instance Data Impacts in Business Processes: A Model-based
Analysis [0.39165216307579426]
This paper addresses possible impacts that may be affected through shared data across process instances.
The suggested method uses both a process model and a (relational) data model in order to identify potential inter-instance data impact sets.
The applicability of the method was evaluated using three different realistic processes.
arXiv Detail & Related papers (2024-01-29T21:35:13Z) - Assessing Privacy Risks in Language Models: A Case Study on
Summarization Tasks [65.21536453075275]
We focus on the summarization task and investigate the membership inference (MI) attack.
We exploit text similarity and the model's resistance to document modifications as potential MI signals.
We discuss several safeguards for training summarization models to protect against MI attacks and discuss the inherent trade-off between privacy and utility.
arXiv Detail & Related papers (2023-10-20T05:44:39Z) - Relational Action Bases: Formalization, Effective Safety Verification,
and Invariants (Extended Version) [67.99023219822564]
We introduce the general framework of relational action bases (RABs)
RABs generalize existing models by lifting both restrictions.
We demonstrate the effectiveness of this approach on a benchmark of data-aware business processes.
arXiv Detail & Related papers (2022-08-12T17:03:50Z) - Accessing and Interpreting OPC UA Event Traces based on Semantic Process
Descriptions [69.9674326582747]
This paper proposes an approach to access a production systems' event data based on the event data's context.
The approach extracts filtered event logs from a database system by combining: 1) a semantic model of a production system's hierarchical structure, 2) a formalized process description and 3) an OPC UA information model.
arXiv Detail & Related papers (2022-07-25T15:13:44Z) - Bellamy: Reusing Performance Models for Distributed Dataflow Jobs Across
Contexts [52.9168275057997]
This paper presents Bellamy, a novel modeling approach that combines scale-outs, dataset sizes, and runtimes with additional descriptive properties of a dataflow job.
We evaluate our approach on two publicly available datasets consisting of execution data from various dataflow jobs carried out in different environments.
arXiv Detail & Related papers (2021-07-29T11:57:38Z) - Bootstrapping Generalization of Process Models Discovered From Event
Data [10.574698833115589]
Generalization seeks to quantify how well a discovered model describes future executions of the system.
We employ a bootstrap approach to estimate properties of a population based on a sample.
Experiments demonstrate the feasibility of the approach in industrial settings.
arXiv Detail & Related papers (2021-07-08T14:35:56Z) - Automated simulation and verification of process models discovered by
process mining [0.0]
This paper presents a novel approach for automated analysis of process models discovered using process mining techniques.
Process mining explores underlying processes hidden in the event data generated by various devices.
arXiv Detail & Related papers (2020-11-03T11:51:53Z) - Process Discovery for Structured Program Synthesis [70.29027202357385]
A core task in process mining is process discovery which aims to learn an accurate process model from event log data.
In this paper, we propose to use (block-) structured programs directly as target process models.
We develop a novel bottom-up agglomerative approach to the discovery of such structured program process models.
arXiv Detail & Related papers (2020-08-13T10:33:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.