A Reference Model and Patterns for Production Event Data Enrichment
- URL: http://arxiv.org/abs/2506.11502v2
- Date: Mon, 16 Jun 2025 14:36:50 GMT
- Title: A Reference Model and Patterns for Production Event Data Enrichment
- Authors: Mark van der Pas, Remco Dijkman, Alp Akçay, Ivo Adan, John Walker,
- Abstract summary: We introduce a reference model and a collection of patterns designed to enrich production event data.<n>The reference model provides a standard way for storing and extracting production event data.<n>The patterns are developed based on empirical observations from event data sets originating in manufacturing processes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: With the advent of digital transformation, organisations are increasingly generating large volumes of data through the execution of various processes across disparate systems. By integrating data from these heterogeneous sources, it becomes possible to derive new insights essential for tasks such as monitoring and analysing process performance. Typically, this information is extracted during a data pre-processing or engineering phase. However, this step is often performed in an ad-hoc manner and is time-consuming and labour-intensive. To streamline this process, we introduce a reference model and a collection of patterns designed to enrich production event data. The reference model provides a standard way for storing and extracting production event data. The patterns describe common information extraction tasks and how such tasks can be automated effectively. The reference model is developed by combining the ISA-95 industry standard with the Event Knowledge Graph formalism. The patterns are developed based on empirical observations from event data sets originating in manufacturing processes and are formalised using the reference model. We evaluate the relevance and applicability of these patterns by demonstrating their application to use cases.
Related papers
- Process-aware Human Activity Recognition [1.912429179274357]
We propose a novel approach that incorporates process information from context to enhance the HAR performance.
Specifically, we align probabilistic events generated by machine learning models with process models derived from contextual information.
This alignment adaptively weighs these two sources of information to optimise HAR accuracy.
arXiv Detail & Related papers (2024-11-13T17:53:23Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Control-flow Reconstruction Attacks on Business Process Models [3.5602253012485656]
This work is the first to empirically investigate such reconstruction attempts based on process models.
We propose different play-out strategies that reconstruct the control-flow from process trees, potentially exploiting frequency annotations.
arXiv Detail & Related papers (2024-09-17T08:42:55Z) - Mining Constraints from Reference Process Models for Detecting Best-Practice Violations in Event Log [1.389948527681755]
We propose a framework for mining declarative best-practice constraints from a reference model collection.
We demonstrate the capability of our framework to detect best-practice violations through an evaluation based on real-world process model collections and event logs.
arXiv Detail & Related papers (2024-07-02T15:05:37Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapley provides a principled framework for attributing data's contribution within machine learning contexts.<n>Existing approaches require re-training models on different data subsets, which is computationally intensive.<n>This paper introduces In-Run Data Shapley, which addresses these limitations by offering scalable data attribution for a target model of interest.
arXiv Detail & Related papers (2024-06-16T17:09:24Z) - Heat Death of Generative Models in Closed-Loop Learning [63.83608300361159]
We study the learning dynamics of generative models that are fed back their own produced content in addition to their original training dataset.
We show that, unless a sufficient amount of external data is introduced at each iteration, any non-trivial temperature leads the model to degenerate.
arXiv Detail & Related papers (2024-04-02T21:51:39Z) - Avoiding Post-Processing with Event-Based Detection in Biomedical
Signals [69.34035527763916]
We propose an event-based modeling framework that directly works with events as learning targets.
We show that event-based modeling (without post-processing) performs on par with or better than epoch-based modeling with extensive post-processing.
arXiv Detail & Related papers (2022-09-22T13:44:13Z) - Deep Learning based pipeline for anomaly detection and quality
enhancement in industrial binder jetting processes [68.8204255655161]
Anomaly detection describes methods of finding abnormal states, instances or data points that differ from a normal value space.
This paper contributes to a data-centric way of approaching artificial intelligence in industrial production.
arXiv Detail & Related papers (2022-09-21T08:14:34Z) - Accessing and Interpreting OPC UA Event Traces based on Semantic Process
Descriptions [69.9674326582747]
This paper proposes an approach to access a production systems' event data based on the event data's context.
The approach extracts filtered event logs from a database system by combining: 1) a semantic model of a production system's hierarchical structure, 2) a formalized process description and 3) an OPC UA information model.
arXiv Detail & Related papers (2022-07-25T15:13:44Z) - Generating Privacy-Preserving Process Data with Deep Generative Models [7.3268099910347715]
We introduce an adversarial generative network for process data generation (ProcessGAN)
We evaluate ProcessGAN and traditional models on six real-world datasets.
We conclude that ProcessGAN can generate a large amount of sharable synthetic process data indistinguishable from authentic data.
arXiv Detail & Related papers (2022-03-15T14:29:54Z) - Automated simulation and verification of process models discovered by
process mining [0.0]
This paper presents a novel approach for automated analysis of process models discovered using process mining techniques.
Process mining explores underlying processes hidden in the event data generated by various devices.
arXiv Detail & Related papers (2020-11-03T11:51:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.