論文の概要: GINTRIP: Interpretable Temporal Graph Regression using Information bottleneck and Prototype-based method
- arxiv url: http://arxiv.org/abs/2409.10996v1
- Date: Tue, 17 Sep 2024 08:58:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 17:28:59.428570
- Title: GINTRIP: Interpretable Temporal Graph Regression using Information bottleneck and Prototype-based method
- Title(参考訳): GINTRIP:情報ボトルネックとプロトタイプに基づく解釈可能な時間グラフ回帰
- Authors: Ali Royat, Seyed Mohamad Moghadas, Lesley De Cruz, Adrian Munteanu,
- Abstract要約: 本稿では,時間グラフ回帰モデルの解釈可能性を高める新しい手法を提案する。
IB原則の適用性をグラフ回帰タスクに拡張する、相互情報(MI)に基づく新たな理論的境界を導出する。
本モデルは実世界のトラフィックデータセットに基づいて評価され,予測精度と解釈可能性関連指標の両方において既存手法よりも優れていた。
- 参考スコア(独自算出の注目度): 7.570969633244954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) have demonstrated remarkable performance across various domains, yet their application to temporal graph regression tasks faces significant challenges regarding interpretability. This critical issue, rooted in the inherent complexity of both DNNs and underlying spatio-temporal patterns in the graph, calls for innovative solutions. While interpretability concerns in Graph Neural Networks (GNNs) mirror those of DNNs, to the best of our knowledge, no notable work has addressed the interpretability of temporal GNNs using a combination of Information Bottleneck (IB) principles and prototype-based methods. Our research introduces a novel approach that uniquely integrates these techniques to enhance the interpretability of temporal graph regression models. The key contributions of our work are threefold: We introduce the \underline{G}raph \underline{IN}terpretability in \underline{T}emporal \underline{R}egression task using \underline{I}nformation bottleneck and \underline{P}rototype (GINTRIP) framework, the first combined application of IB and prototype-based methods for interpretable temporal graph tasks. We derive a novel theoretical bound on mutual information (MI), extending the applicability of IB principles to graph regression tasks. We incorporate an unsupervised auxiliary classification head, fostering multi-task learning and diverse concept representation, which enhances the model bottleneck's interpretability. Our model is evaluated on real-world traffic datasets, outperforming existing methods in both forecasting accuracy and interpretability-related metrics.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、さまざまな領域で顕著なパフォーマンスを示しているが、時間グラフ回帰タスクへの応用は、解釈可能性に関する重大な課題に直面している。
この重要な問題は、DNNの本質的な複雑さとグラフ内の時空間パターンの両方に根ざしたものであり、革新的な解決策を求めている。
グラフニューラルネットワーク(GNN)の解釈可能性に関する懸念は、私たちの知る限りでは、DNNの理解を反映しているが、Information Bottleneck(IB)の原則とプロトタイプベースの手法を組み合わせることで、時間的GNNの解釈可能性に対処する顕著な研究は行われていない。
本研究は,時間グラフ回帰モデルの解釈可能性を高めるために,これらの手法を一意に統合する新しい手法を提案する。
In \underline{T}emporal \underline{R}egression task using \underline{I}nformation bottleneck and \underline{P}rototype (GINTRIP) framework, the first combined application of IB and prototype-based method for interpretable temporal graph task。
IB原則の適用性をグラフ回帰タスクに拡張する、相互情報(MI)に基づく新たな理論的境界を導出する。
我々は教師なしの補助的分類ヘッドを導入し、マルチタスク学習と多様な概念表現を育成し、モデルのボトルネックの解釈可能性を高める。
本モデルは実世界のトラフィックデータセットに基づいて評価され,予測精度と解釈可能性関連指標の両方において既存手法よりも優れていた。
関連論文リスト
- Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) はノード分類タスク用に設計された非神経モデルである。
GNNにアクセスできる情報のごく一部しか使わない従来のグラフアルゴリズムとは異なり、提案モデルではノードの特徴とエンティティ間の関係を同時に活用する。
論文 参考訳(メタデータ) (2024-11-19T08:32:14Z) - Enhanced Expressivity in Graph Neural Networks with Lanczos-Based Linear Constraints [7.605749412696919]
グラフニューラルネットワーク(GNN)はグラフ構造化データの処理に優れるが、リンク予測タスクでは性能が劣ることが多い。
グラフラプラシア行列の固有基底に誘導された部分グラフを埋め込むことによりGNNの表現性を高める新しい手法を提案する。
提案手法は,PubMedとOGBL-Vesselのデータセットから,5%と10%のデータしか必要とせず,20倍と10倍の高速化を実現する。
論文 参考訳(メタデータ) (2024-08-22T12:22:00Z) - Revealing Decurve Flows for Generalized Graph Propagation [108.80758541147418]
本研究は,有向グラフと重み付きグラフを用いて,m文を一般化した伝播を定義することによって,従来のメッセージパッシング(中心からグラフ学習)の限界に対処する。
この分野ではじめて、データセットにおける学習された伝播パターンの予備的な探索を含む。
論文 参考訳(メタデータ) (2024-02-13T14:13:17Z) - Novel Representation Learning Technique using Graphs for Performance
Analytics [0.0]
本稿では,グラフニューラルネットワーク(GNN)技術の進歩を活用するために,パフォーマンスデータをグラフに変換する新しいアイデアを提案する。
ソーシャルネットワークのような他の機械学習アプリケーションドメインとは対照的に、グラフは提供されない。
我々は,GNNから生成された埋め込みの有効性を,単純なフィードフォワードニューラルネットワークによる回帰処理の性能評価に基づいて評価した。
論文 参考訳(メタデータ) (2024-01-19T16:34:37Z) - HetGPT: Harnessing the Power of Prompt Tuning in Pre-Trained
Heterogeneous Graph Neural Networks [24.435068514392487]
HetGPTは、グラフニューラルネットワークのトレーニング後プロンプトフレームワークである。
半教師付きノード分類における最先端HGNNの性能を向上させる。
論文 参考訳(メタデータ) (2023-10-23T19:35:57Z) - RegExplainer: Generating Explanations for Graph Neural Networks in Regression Tasks [10.473178462412584]
グラフ回帰モデル(XAIG-R)を解釈する新しい説明法を提案する。
本手法は分散シフト問題と連続順序決定境界問題に対処する。
回帰タスクにおいて連続的に順序付けられたラベルに取り組むための自己教師型学習戦略を提案する。
論文 参考訳(メタデータ) (2023-07-15T16:16:22Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから実際に学習する上で、近年大きな進歩を遂げている。
回帰問題と二項分類問題の両方に隠れ層を持つGNNの理論的に基底的な一般化可能性解析を行う。
論文 参考訳(メタデータ) (2020-06-25T00:45:52Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。