論文の概要: Graph as a feature: improving node classification with non-neural graph-aware logistic regression
- arxiv url: http://arxiv.org/abs/2411.12330v1
- Date: Tue, 19 Nov 2024 08:32:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:36:09.977245
- Title: Graph as a feature: improving node classification with non-neural graph-aware logistic regression
- Title(参考訳): 特徴としてのグラフ:非神経グラフ認識ロジスティック回帰によるノード分類の改善
- Authors: Simon Delarue, Thomas Bonald, Tiphaine Viard,
- Abstract要約: Graph-aware Logistic Regression (GLR) はノード分類タスク用に設計された非神経モデルである。
GNNにアクセスできる情報のごく一部しか使わない従来のグラフアルゴリズムとは異なり、提案モデルではノードの特徴とエンティティ間の関係を同時に活用する。
- 参考スコア(独自算出の注目度): 2.952177779219163
- License:
- Abstract: Graph Neural Networks (GNNs) and their message passing framework that leverages both structural and feature information, have become a standard method for solving graph-based machine learning problems. However, these approaches still struggle to generalise well beyond datasets that exhibit strong homophily, where nodes of the same class tend to connect. This limitation has led to the development of complex neural architectures that pose challenges in terms of efficiency and scalability. In response to these limitations, we focus on simpler and more scalable approaches and introduce Graph-aware Logistic Regression (GLR), a non-neural model designed for node classification tasks. Unlike traditional graph algorithms that use only a fraction of the information accessible to GNNs, our proposed model simultaneously leverages both node features and the relationships between entities. However instead of relying on message passing, our approach encodes each node's relationships as an additional feature vector, which is then combined with the node's self attributes. Extensive experimental results, conducted within a rigorous evaluation framework, show that our proposed GLR approach outperforms both foundational and sophisticated state-of-the-art GNN models in node classification tasks. Going beyond the traditional limited benchmarks, our experiments indicate that GLR increases generalisation ability while reaching performance gains in computation time up to two orders of magnitude compared to it best neural competitor.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)とその構造情報と特徴情報の両方を活用するメッセージパッシングフレームワークは、グラフベースの機械学習問題を解決する標準的な方法となっている。
しかしながら、これらのアプローチは、同じクラスのノードが接続する傾向にある強いホモフィリを示すデータセットをはるかに超える一般化に苦慮している。
この制限は、効率性とスケーラビリティの面で課題を提起する複雑なニューラルネットワークアーキテクチャの開発につながった。
これらの制限に対応するため、我々はよりシンプルでスケーラブルなアプローチに注目し、ノード分類タスク用に設計された非神経モデルであるグラフ認識ロジスティック回帰(GLR)を導入する。
GNNにアクセスできる情報のごく一部しか使わない従来のグラフアルゴリズムとは異なり、提案モデルではノードの特徴とエンティティ間の関係を同時に活用する。
しかし、メッセージパッシングに頼る代わりに、我々のアプローチは各ノードの関係を付加的な特徴ベクトルとしてエンコードし、ノードの自己属性と結合する。
厳密な評価枠組みで実施した大規模な実験結果から,提案手法はノード分類タスクにおける基礎的および高度なGNNモデルよりも優れていることが示された。
従来の限定ベンチマークを超えて、我々の実験はGLRが最大2桁の計算時間で最大2桁の性能向上を達成しながら、一般化能力を向上させることを示唆している。
関連論文リスト
- Enhanced Expressivity in Graph Neural Networks with Lanczos-Based Linear Constraints [7.605749412696919]
グラフニューラルネットワーク(GNN)はグラフ構造化データの処理に優れるが、リンク予測タスクでは性能が劣ることが多い。
グラフラプラシア行列の固有基底に誘導された部分グラフを埋め込むことによりGNNの表現性を高める新しい手法を提案する。
提案手法は,PubMedとOGBL-Vesselのデータセットから,5%と10%のデータしか必要とせず,20倍と10倍の高速化を実現する。
論文 参考訳(メタデータ) (2024-08-22T12:22:00Z) - GraphRARE: Reinforcement Learning Enhanced Graph Neural Network with Relative Entropy [21.553180564868306]
GraphRAREはノード相対エントロピーと深層強化学習に基づいて構築されたフレームワークである。
革新的なノード相対エントロピーは、ノードペア間の相互情報を測定するために使用される。
グラフトポロジを最適化するために,深層強化学習に基づくアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-12-15T11:30:18Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
本稿では,GNNの逆写像に対する新しい,スケーラブルな近似による学習バイアスを軽減するために,ラベルの効率的な正規化手法,すなわちラベルのデコンボリューション(LD)を提案する。
実験では、LDはOpen Graphデータセットのベンチマークで最先端のメソッドを大幅に上回っている。
論文 参考訳(メタデータ) (2023-09-26T13:09:43Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
本稿では,CGPと呼ばれるグラフの段階的プルーニングフレームワークを動的にGNNに提案する。
LTHに基づく手法とは異なり、提案手法では再学習を必要とせず、計算コストを大幅に削減する。
提案手法は,既存の手法の精度を一致させたり,あるいは超えたりしながら,トレーニングと推論の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2022-07-18T14:23:31Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
本稿では,グラフ全体を部分的に観測されたマルコフ確率場としてモデル化するEPFGNN(Explicit Pairwise Factorized Graph Neural Network)を提案する。
出力-出力関係をモデル化するための明示的なペアワイズ要素を含み、入力-出力関係をモデル化するためにGNNバックボーンを使用する。
本研究では,グラフ上での半教師付きノード分類の性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2021-07-27T19:47:53Z) - GAIN: Graph Attention & Interaction Network for Inductive
Semi-Supervised Learning over Large-scale Graphs [18.23435958000212]
グラフニューラルネットワーク(GNN)は、推薦、ノード分類、リンク予測など、さまざまな機械学習タスクにおいて最先端のパフォーマンスを実現している。
既存のGNNモデルの多くは、隣接するノード情報を集約するために単一のタイプのアグリゲータを利用している。
本稿では,グラフ上の帰納学習のための新しいグラフニューラルネットワークアーキテクチャであるグラフ注意と相互作用ネットワーク(GAIN)を提案する。
論文 参考訳(メタデータ) (2020-11-03T00:20:24Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
本稿では,新しい階層型メッセージパッシンググラフニューラルネットワークフレームワークを提案する。
鍵となるアイデアは、フラットグラフ内のすべてのノードをマルチレベルなスーパーグラフに再編成する階層構造を生成することである。
階層型コミュニティ対応グラフニューラルネットワーク(HC-GNN)と呼ばれる,このフレームワークを実装した最初のモデルを提案する。
論文 参考訳(メタデータ) (2020-09-08T13:11:07Z) - Adaptive Universal Generalized PageRank Graph Neural Network [36.850433364139924]
グラフニューラルネットワーク(GNN)は、両方の証拠源を利用するように設計されている。
本稿では,GPR重みを適応的に学習する汎用PageRank (GPR) GNNアーキテクチャを提案する。
GPR-GNNは、合成データとベンチマークデータの両方の既存の技術と比較して、大幅な性能改善を提供する。
論文 参考訳(メタデータ) (2020-06-14T19:27:39Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。