GINTRIP: Interpretable Temporal Graph Regression using Information bottleneck and Prototype-based method
- URL: http://arxiv.org/abs/2409.10996v1
- Date: Tue, 17 Sep 2024 08:58:40 GMT
- Title: GINTRIP: Interpretable Temporal Graph Regression using Information bottleneck and Prototype-based method
- Authors: Ali Royat, Seyed Mohamad Moghadas, Lesley De Cruz, Adrian Munteanu,
- Abstract summary: We introduce a novel approach to enhance the interpretability of temporal graph regression models.
We derive a novel theoretical bound on mutual information (MI), extending the applicability of IB principles to graph regression tasks.
Our model is evaluated on real-world traffic datasets, outperforming existing methods in both forecasting accuracy and interpretability-related metrics.
- Score: 7.570969633244954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) have demonstrated remarkable performance across various domains, yet their application to temporal graph regression tasks faces significant challenges regarding interpretability. This critical issue, rooted in the inherent complexity of both DNNs and underlying spatio-temporal patterns in the graph, calls for innovative solutions. While interpretability concerns in Graph Neural Networks (GNNs) mirror those of DNNs, to the best of our knowledge, no notable work has addressed the interpretability of temporal GNNs using a combination of Information Bottleneck (IB) principles and prototype-based methods. Our research introduces a novel approach that uniquely integrates these techniques to enhance the interpretability of temporal graph regression models. The key contributions of our work are threefold: We introduce the \underline{G}raph \underline{IN}terpretability in \underline{T}emporal \underline{R}egression task using \underline{I}nformation bottleneck and \underline{P}rototype (GINTRIP) framework, the first combined application of IB and prototype-based methods for interpretable temporal graph tasks. We derive a novel theoretical bound on mutual information (MI), extending the applicability of IB principles to graph regression tasks. We incorporate an unsupervised auxiliary classification head, fostering multi-task learning and diverse concept representation, which enhances the model bottleneck's interpretability. Our model is evaluated on real-world traffic datasets, outperforming existing methods in both forecasting accuracy and interpretability-related metrics.
Related papers
- Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) is a non-neural model designed for node classification tasks.
Unlike traditional graph algorithms that use only a fraction of the information accessible to GNNs, our proposed model simultaneously leverages both node features and the relationships between entities.
arXiv Detail & Related papers (2024-11-19T08:32:14Z) - Enhanced Expressivity in Graph Neural Networks with Lanczos-Based Linear Constraints [7.605749412696919]
Graph Neural Networks (GNNs) excel in handling graph-structured data but often underperform in link prediction tasks.
We present a novel method to enhance the expressivity of GNNs by embedding induced subgraphs into the graph Laplacian matrix's eigenbasis.
Our method achieves 20x and 10x speedup by only requiring 5% and 10% data from the PubMed and OGBL-Vessel datasets.
arXiv Detail & Related papers (2024-08-22T12:22:00Z) - Revealing Decurve Flows for Generalized Graph Propagation [108.80758541147418]
This study addresses the limitations of the traditional analysis of message-passing, central to graph learning, by defining em textbfgeneralized propagation with directed and weighted graphs.
We include a preliminary exploration of learned propagation patterns in datasets, a first in the field.
arXiv Detail & Related papers (2024-02-13T14:13:17Z) - Novel Representation Learning Technique using Graphs for Performance
Analytics [0.0]
We propose a novel idea of transforming performance data into graphs to leverage the advancement of Graph Neural Network-based (GNN) techniques.
In contrast to other Machine Learning application domains, such as social networks, the graph is not given; instead, we need to build it.
We evaluate the effectiveness of the generated embeddings from GNNs based on how well they make even a simple feed-forward neural network perform for regression tasks.
arXiv Detail & Related papers (2024-01-19T16:34:37Z) - HetGPT: Harnessing the Power of Prompt Tuning in Pre-Trained
Heterogeneous Graph Neural Networks [24.435068514392487]
HetGPT is a post-training prompting framework for graph neural networks.
It improves the performance of state-of-the-art HGNNs on semi-supervised node classification.
arXiv Detail & Related papers (2023-10-23T19:35:57Z) - RegExplainer: Generating Explanations for Graph Neural Networks in Regression Tasks [10.473178462412584]
We propose a novel explanation method to interpret the graph regression models (XAIG-R)
Our method addresses the distribution shifting problem and continuously ordered decision boundary issues.
We present a self-supervised learning strategy to tackle the continuously ordered labels in regression tasks.
arXiv Detail & Related papers (2023-07-15T16:16:22Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
Graph neural networks (GNNs) have made great progress recently on learning from graph-structured data in practice.
We provide a theoretically-grounded generalizability analysis of GNNs with one hidden layer for both regression and binary classification problems.
arXiv Detail & Related papers (2020-06-25T00:45:52Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.