Latent mixed-effect models for high-dimensional longitudinal data
- URL: http://arxiv.org/abs/2409.11008v1
- Date: Tue, 17 Sep 2024 09:16:38 GMT
- Title: Latent mixed-effect models for high-dimensional longitudinal data
- Authors: Priscilla Ong, Manuel Haußmann, Otto Lönnroth, Harri Lähdesmäki,
- Abstract summary: We propose LMM-VAE, a scalable, interpretable and identifiable model for longitudinal data.
We highlight theoretical connections between it and GP-based techniques, providing a unified framework for this class of methods.
- Score: 6.103940626659986
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Modelling longitudinal data is an important yet challenging task. These datasets can be high-dimensional, contain non-linear effects and time-varying covariates. Gaussian process (GP) prior-based variational autoencoders (VAEs) have emerged as a promising approach due to their ability to model time-series data. However, they are costly to train and struggle to fully exploit the rich covariates characteristic of longitudinal data, making them difficult for practitioners to use effectively. In this work, we leverage linear mixed models (LMMs) and amortized variational inference to provide conditional priors for VAEs, and propose LMM-VAE, a scalable, interpretable and identifiable model. We highlight theoretical connections between it and GP-based techniques, providing a unified framework for this class of methods. Our proposal performs competitively compared to existing approaches across simulated and real-world datasets.
Related papers
- A Scalable Approach to Covariate and Concept Drift Management via Adaptive Data Segmentation [0.562479170374811]
In many real-world applications, continuous machine learning (ML) systems are crucial but prone to data drift.
Traditional drift adaptation methods typically update models using ensemble techniques, often discarding drifted historical data.
We contend that explicitly incorporating drifted data into the model training process significantly enhances model accuracy and robustness.
arXiv Detail & Related papers (2024-11-23T17:35:23Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - Progressively Label Enhancement for Large Language Model Alignment [42.01694160556464]
Large Language Models (LLM) alignment aims to prevent models from producing content that misaligns with human expectations.
We propose PLE, a framework that dynamically adjusts the model's training process based on the evolving quality of the generated data.
arXiv Detail & Related papers (2024-08-05T16:21:17Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Latent variable model for high-dimensional point process with structured missingness [4.451479907610764]
Longitudinal data are important in numerous fields, such as healthcare, sociology and seismology.
Real-world datasets can be high-dimensional, contain structured missingness patterns, and measurement time points can be governed by an unknown process.
We propose a flexible and efficient latent-variable model that is capable of addressing all these limitations.
arXiv Detail & Related papers (2024-02-08T15:41:48Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Stable Training of Probabilistic Models Using the Leave-One-Out Maximum Log-Likelihood Objective [0.7373617024876725]
Kernel density estimation (KDE) based models are popular choices for this task, but they fail to adapt to data regions with varying densities.
An adaptive KDE model is employed to circumvent this, where each kernel in the model has an individual bandwidth.
A modified expectation-maximization algorithm is employed to accelerate the optimization speed reliably.
arXiv Detail & Related papers (2023-10-05T14:08:42Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - A Variational Autoencoder for Heterogeneous Temporal and Longitudinal
Data [0.3749861135832073]
Recently proposed extensions to VAEs that can handle temporal and longitudinal data have applications in healthcare, behavioural modelling, and predictive maintenance.
We propose the heterogeneous longitudinal VAE (HL-VAE) that extends the existing temporal and longitudinal VAEs to heterogeneous data.
HL-VAE provides efficient inference for high-dimensional datasets and includes likelihood models for continuous, count, categorical, and ordinal data.
arXiv Detail & Related papers (2022-04-20T10:18:39Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.