Transfer Learning with Foundational Models for Time Series Forecasting using Low-Rank Adaptations
- URL: http://arxiv.org/abs/2410.11539v2
- Date: Thu, 24 Apr 2025 10:58:06 GMT
- Title: Transfer Learning with Foundational Models for Time Series Forecasting using Low-Rank Adaptations
- Authors: M. Germán-Morales, A. J. Rivera-Rivas, M. J. del Jesus Díaz, C. J. Carmona,
- Abstract summary: This study proposes the methodology LLIAM, a straightforward adaptation of a kind of FM, Large Language Models, for the Time Series Forecasting task.<n>A comparison was made between the performance of LLIAM and different state-of-the-art DL algorithms, including Recurrent Neural Networks and Temporal Convolutional Networks, as well as a LLM-based method, TimeLLM.<n>The outcomes of this investigation demonstrate the efficacy of LLIAM, highlighting that this straightforward and general approach can attain competent results without the necessity for applying complex modifications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Foundational Models are an emerging widely used technique of GenAI. These models are distinguished by their scalability and the ease with which they can be adapted through the exploitation of Transfer Learning. The availability of high computational power and large datasets have supported their development, achieving a high generalization capacity due to the enormous and heterogeneous amounts of data used in their initial training. These characteristics contribute to a solid base that can be adapted or adjusted to a wide range of tasks, increasing their applicability. This study proposes the methodology LLIAM, a straightforward adaptation of a kind of FM, Large Language Models, for the Time Series Forecasting task. An adequate time-series prompting schema and Low-Rank Adaptations are used to enhance the knowledge of the model with diverse time series datasets, known as the fine-tuning phase. A study divided in two stages has been performed for evaluating the effectiveness of the proposed methodology. Initially, a comparison was made between the performance of LLIAM and different state-of-the-art DL algorithms, including Recurrent Neural Networks and Temporal Convolutional Networks, as well as a LLM-based method, TimeLLM. Following this, a zero-shot study is presented in order to evaluate the generalization capacity of the proposed methodology with time series datasets from unknown domains not considered in the model training. The outcomes of this investigation demonstrate the efficacy of LLIAM, highlighting that this straightforward and general approach can attain competent results without the necessity for applying complex modifications. This work also encourages the use of available resources (such as these pre-trained models) and efficient fine-tuning techniques to avoid unnecessary and costly training, narrowing the gap between the goals of traditional AI and Green AI.
Related papers
- Parameter-Efficient Continual Fine-Tuning: A Survey [5.59258786465086]
We believe the next breakthrough in AI lies in enabling efficient adaptation to evolving environments.
One alternative to efficiently adapt these large-scale models is known.
Efficient Fine-Tuning (PEFT)
arXiv Detail & Related papers (2025-04-18T17:51:51Z) - Efficient Model Selection for Time Series Forecasting via LLMs [52.31535714387368]
We propose to leverage Large Language Models (LLMs) as a lightweight alternative for model selection.
Our method eliminates the need for explicit performance matrices by utilizing the inherent knowledge and reasoning capabilities of LLMs.
arXiv Detail & Related papers (2025-04-02T20:33:27Z) - Large Language Models as Attribution Regularizers for Efficient Model Training [0.0]
Large Language Models (LLMs) have demonstrated remarkable performance across diverse domains.
We introduce a novel yet straightforward method for incorporating LLM-generated global task feature attributions into the training process of smaller networks.
Our approach yields superior performance in few-shot learning scenarios.
arXiv Detail & Related papers (2025-02-27T16:55:18Z) - Self-Supervised Radio Pre-training: Toward Foundational Models for Spectrogram Learning [6.1339395157466425]
Foundational deep learning (DL) models are general models, trained on diverse, diverse, and unlabelled datasets.
We introduce Masked Spectrogram Modeling, a novel self-supervised learning approach for pretraining foundational DL models on radio signals.
arXiv Detail & Related papers (2024-11-14T23:56:57Z) - Meta-Learning Adaptable Foundation Models [37.458141335750696]
We introduce a meta-learning framework infused with PEFT in this intermediate retraining stage to learn a model that can be easily adapted to unseen tasks.
In this setting, we demonstrate the suboptimality of standard retraining for finding an adaptable set of parameters.
We then apply these theoretical insights to retraining the RoBERTa model to predict the continuation of conversations within the ConvAI2 dataset.
arXiv Detail & Related papers (2024-10-29T17:24:18Z) - Applied Federated Model Personalisation in the Industrial Domain: A Comparative Study [5.999474111757664]
Three suggested strategies to tackle this challenge include Active Learning, Knowledge Distillation, and Local Memorization.
The present study delves into the fundamental principles of these three approaches and proposes an advanced Federated Learning System.
The results of the original and optimised models are then compared in both local and federated contexts using a comparison analysis.
arXiv Detail & Related papers (2024-09-10T23:00:19Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - A Survey of Deep Learning and Foundation Models for Time Series
Forecasting [16.814826712022324]
Deep learning has been successfully applied to many application domains, yet its advantages have been slow to emerge for time series forecasting.
Foundation models with extensive pre-training allow models to understand patterns and acquire knowledge that can be applied to new related problems.
There is ongoing research examining how to utilize or inject such knowledge into deep learning models.
arXiv Detail & Related papers (2024-01-25T03:14:07Z) - Back to Basics: A Simple Recipe for Improving Out-of-Domain Retrieval in
Dense Encoders [63.28408887247742]
We study whether training procedures can be improved to yield better generalization capabilities in the resulting models.
We recommend a simple recipe for training dense encoders: Train on MSMARCO with parameter-efficient methods, such as LoRA, and opt for using in-batch negatives unless given well-constructed hard negatives.
arXiv Detail & Related papers (2023-11-16T10:42:58Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - An Emulator for Fine-Tuning Large Language Models using Small Language
Models [91.02498576056057]
We introduce emulated fine-tuning (EFT), a principled and practical method for sampling from a distribution that approximates the result of pre-training and fine-tuning at different scales.
We show that EFT enables test-time adjustment of competing behavioral traits like helpfulness and harmlessness without additional training.
Finally, a special case of emulated fine-tuning, which we call LM up-scaling, avoids resource-intensive fine-tuning of large pre-trained models by ensembling them with small fine-tuned models.
arXiv Detail & Related papers (2023-10-19T17:57:16Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - Learning to Jump: Thinning and Thickening Latent Counts for Generative
Modeling [69.60713300418467]
Learning to jump is a general recipe for generative modeling of various types of data.
We demonstrate when learning to jump is expected to perform comparably to learning to denoise, and when it is expected to perform better.
arXiv Detail & Related papers (2023-05-28T05:38:28Z) - Phased Data Augmentation for Training a Likelihood-Based Generative Model with Limited Data [0.0]
Generative models excel in creating realistic images, yet their dependency on extensive datasets for training presents significant challenges.
Current data-efficient methods largely focus on GAN architectures, leaving a gap in training other types of generative models.
"phased data augmentation" is a novel technique that addresses this gap by optimizing training in limited data scenarios without altering the inherent data distribution.
arXiv Detail & Related papers (2023-05-22T03:38:59Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
We make empirical studies of state-of-the-art UniDA methods using foundation models.
We introduce textitCLIP distillation, a parameter-free method specifically designed to distill target knowledge from CLIP models.
Although simple, our method outperforms previous approaches in most benchmark tasks.
arXiv Detail & Related papers (2023-05-18T16:28:29Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Leveraging Jumpy Models for Planning and Fast Learning in Robotic
Domains [25.245208731491346]
We study the problem of learning multi-step dynamics prediction models (jumpy models) from unlabeled experience.
We propose to learn a jumpy model alongside a skill embedding space offline, from previously collected experience.
We conduct a set of experiments in the RGB-stacking environment, showing that planning with the learned skills and the associated model can enable zero-shot generalization to new tasks.
arXiv Detail & Related papers (2023-02-24T13:26:03Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Regularizing Generative Adversarial Networks under Limited Data [88.57330330305535]
This work proposes a regularization approach for training robust GAN models on limited data.
We show a connection between the regularized loss and an f-divergence called LeCam-divergence, which we find is more robust under limited training data.
arXiv Detail & Related papers (2021-04-07T17:59:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.