Latent variable model for high-dimensional point process with structured missingness
- URL: http://arxiv.org/abs/2402.05758v2
- Date: Fri, 28 Jun 2024 14:27:29 GMT
- Title: Latent variable model for high-dimensional point process with structured missingness
- Authors: Maksim Sinelnikov, Manuel Haussmann, Harri Lähdesmäki,
- Abstract summary: Longitudinal data are important in numerous fields, such as healthcare, sociology and seismology.
Real-world datasets can be high-dimensional, contain structured missingness patterns, and measurement time points can be governed by an unknown process.
We propose a flexible and efficient latent-variable model that is capable of addressing all these limitations.
- Score: 4.451479907610764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Longitudinal data are important in numerous fields, such as healthcare, sociology and seismology, but real-world datasets present notable challenges for practitioners because they can be high-dimensional, contain structured missingness patterns, and measurement time points can be governed by an unknown stochastic process. While various solutions have been suggested, the majority of them have been designed to account for only one of these challenges. In this work, we propose a flexible and efficient latent-variable model that is capable of addressing all these limitations. Our approach utilizes Gaussian processes to capture temporal correlations between samples and their associated missingness masks as well as to model the underlying point process. We construct our model as a variational autoencoder together with deep neural network parameterised encoder and decoder models, and develop a scalable amortised variational inference approach for efficient model training. We demonstrate competitive performance using both simulated and real datasets.
Related papers
- Latent mixed-effect models for high-dimensional longitudinal data [6.103940626659986]
We propose LMM-VAE, a scalable, interpretable and identifiable model for longitudinal data.
We highlight theoretical connections between it and GP-based techniques, providing a unified framework for this class of methods.
arXiv Detail & Related papers (2024-09-17T09:16:38Z) - Towards Learning Stochastic Population Models by Gradient Descent [0.0]
We show that simultaneous estimation of parameters and structure poses major challenges for optimization procedures.
We demonstrate accurate estimation of models but find that enforcing the inference of parsimonious, interpretable models drastically increases the difficulty.
arXiv Detail & Related papers (2024-04-10T14:38:58Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
Deep learning provides accurate collaborative filtering models to improve recommender system results.
Our proposed models apply the variational concept to injectity in the latent space of the deep architecture.
Results show the superiority of the proposed approach in scenarios where the variational enrichment exceeds the injected noise effect.
arXiv Detail & Related papers (2021-07-27T08:59:39Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Balancing Accuracy and Latency in Multipath Neural Networks [0.09668407688201358]
We use a one-shot neural architecture search model to implicitly evaluate the performance of an intractable number of neural networks.
We show that our method can accurately model the relative performance between models with different latencies and predict the performance of unseen models with good precision across different datasets.
arXiv Detail & Related papers (2021-04-25T00:05:48Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Amortized Bayesian Inference for Models of Cognition [0.1529342790344802]
Recent advances in simulation-based inference using specialized neural network architectures circumvent many previous problems of approximate Bayesian computation.
We provide a general introduction to amortized Bayesian parameter estimation and model comparison.
arXiv Detail & Related papers (2020-05-08T08:12:15Z) - Variational Hyper RNN for Sequence Modeling [69.0659591456772]
We propose a novel probabilistic sequence model that excels at capturing high variability in time series data.
Our method uses temporal latent variables to capture information about the underlying data pattern.
The efficacy of the proposed method is demonstrated on a range of synthetic and real-world sequential data.
arXiv Detail & Related papers (2020-02-24T19:30:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.