論文の概要: On-policy Actor-Critic Reinforcement Learning for Multi-UAV Exploration
- arxiv url: http://arxiv.org/abs/2409.11058v1
- Date: Tue, 17 Sep 2024 10:36:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 17:05:36.324735
- Title: On-policy Actor-Critic Reinforcement Learning for Multi-UAV Exploration
- Title(参考訳): マルチUAV探査のためのオンラインアクター・クリティカル強化学習
- Authors: Ali Moltajaei Farid, Jafar Roshanian, Malek Mouhoub,
- Abstract要約: 無人航空機(UAV)は、精密農業、捜索救助、リモートセンシングなど、様々な分野で人気が高まっている。
本研究は,複数のUAVを用いて2次元の関心領域を探索するために,政治強化学習(RL)とPPO(Pximal Policy Optimization)を活用することで,この問題に対処することを目的とする。
提案手法は、深層畳み込みニューラルネットワーク(CNN)と長短期記憶(LSTM)を用いて、UAVと既にカバーされている領域を特定することを含む。
- 参考スコア(独自算出の注目度): 0.7373617024876724
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Unmanned aerial vehicles (UAVs) have become increasingly popular in various fields, including precision agriculture, search and rescue, and remote sensing. However, exploring unknown environments remains a significant challenge. This study aims to address this challenge by utilizing on-policy Reinforcement Learning (RL) with Proximal Policy Optimization (PPO) to explore the {two dimensional} area of interest with multiple UAVs. The UAVs will avoid collision with obstacles and each other and do the exploration in a distributed manner. The proposed solution includes actor-critic networks using deep convolutional neural networks {(CNN)} and long short-term memory (LSTM) for identifying the UAVs and areas that have already been covered. Compared to other RL techniques, such as policy gradient (PG) and asynchronous advantage actor-critic (A3C), the simulation results demonstrate the superiority of the proposed PPO approach. Also, the results show that combining LSTM with CNN in critic can improve exploration. Since the proposed exploration has to work in unknown environments, the results showed that the proposed setup can complete the coverage when we have new maps that differ from the trained maps. Finally, we showed how tuning hyper parameters may affect the overall performance.
- Abstract(参考訳): 無人航空機(UAV)は、精密農業、捜索救助、リモートセンシングなど、様々な分野で人気が高まっている。
しかし、未知の環境を探索することは依然として重要な課題である。
本研究の目的は,政策最適化(PPO)と政治強化学習(RL)を併用して,複数のUAVによる関心領域の「2次元」を探索することにある。
UAVは障害物同士の衝突を回避し、分散した方法で探査を行う。
提案手法は、深層畳み込みニューラルネットワーク(CNN)と長短期記憶(LSTM)を用いて、UAVと既にカバーされている領域を特定することを含む。
ポリシー勾配 (PG) や非同期・アドバンスト・アクター・クリティカル (A3C) といった他のRL手法と比較して, シミュレーションの結果は提案したPPO手法の優位性を示している。
また, LSTMとCNNを併用することで, 探索を改善できることが示唆された。
提案手法は未知の環境で動作しなければならないため,提案手法は訓練された地図と異なる新たな地図が得られた場合に適用可能であることを示した。
最後に、ハイパーパラメータのチューニングが全体的なパフォーマンスにどのように影響するかを示した。
関連論文リスト
- Latent Exploration for Reinforcement Learning [87.42776741119653]
強化学習では、エージェントは環境を探索し、相互作用することでポリシーを学ぶ。
LATent TIme-Correlated Exploration (Lattice)を提案する。
論文 参考訳(メタデータ) (2023-05-31T17:40:43Z) - Rewarding Episodic Visitation Discrepancy for Exploration in
Reinforcement Learning [64.8463574294237]
本稿では,効率的かつ定量的な探索手法として,Rewarding Episodic Visitation Discrepancy (REVD)を提案する。
REVDは、R'enyiの発散に基づくエピソード間の訪問不一致を評価することによって、本質的な報酬を提供する。
PyBullet Robotics EnvironmentsとAtariゲームでテストされている。
論文 参考訳(メタデータ) (2022-09-19T08:42:46Z) - Aerial View Goal Localization with Reinforcement Learning [6.165163123577484]
本稿では,実際のUAVへのアクセスを必要とせずに,SAR(Search-and-Rescue)のようなセットアップをエミュレートするフレームワークを提案する。
この枠組みでは、エージェントが空中画像(探索領域のプロキシ)上で動作し、視覚的手がかりとして記述されたゴールのローカライズを行う。
AiRLocは、探索(遠方目標探索)と搾取(近方目標の局所化)を分離する強化学習(RL)に基づくモデルである。
論文 参考訳(メタデータ) (2022-09-08T10:27:53Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
航空ドローンの映像の視覚検査は、現在土地捜索救助(SAR)活動に不可欠な部分である。
本稿では,この空中人物検出(APD)タスクを自動化するための新しいディープラーニングアルゴリズムを提案する。
本稿では,Aerial Inspection RetinaNet (AIR) アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-11-17T21:48:31Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
複雑なGPSを用いた複雑な環境において,UAVのチームが協調して目標を探索し,発見するための枠組みを提案する。
UAVのチームは自律的にナビゲートし、探索し、検出し、既知の地図で散らばった環境でターゲットを見つける。
その結果, 提案方式は, 時間的コスト, 調査対象地域の割合, 捜索・救助ミッションの成功率などの面で改善されていることがわかった。
論文 参考訳(メタデータ) (2021-07-19T12:54:04Z) - Deep Reinforcement Learning for Adaptive Exploration of Unknown
Environments [6.90777229452271]
私達はUAVのための1つのステップで調査および搾取間のトレードオフに適応的な調査のアプローチを開発します。
提案手法では, 環境マップを小型でトラクタブルな地図に分解するために, マップセグメンテーション手法を用いる。
その結果,本提案手法は,ランダムに生成された環境をナビゲートし,ベースラインと比較してAoIを短時間でカバーできることが示された。
論文 参考訳(メタデータ) (2021-05-04T16:29:44Z) - Decentralized Reinforcement Learning for Multi-Target Search and
Detection by a Team of Drones [12.055303570215335]
対象の探索と検出は、カバレッジ、監視、探索、観測、追跡回避など、さまざまな決定問題を含む。
我々は,未知の領域における静的な目標のセットを特定するために,航空機群(ドローン)を協調させるマルチエージェント深部強化学習法(MADRL)を開発した。
論文 参考訳(メタデータ) (2021-03-17T09:04:47Z) - A Vision Based Deep Reinforcement Learning Algorithm for UAV Obstacle
Avoidance [1.2693545159861856]
UAV障害物回避のための探索を改善するための2つの技術を紹介します。
ひとつは収束に基づくアプローチで、探索されていない動作と時間しきい値を反復して探索と搾取のバランスをとる。
2つ目は、ガウス混合分布を用いて予測された次の状態と比較し、次のアクションを選択するためのガイダンスベースアプローチである。
論文 参考訳(メタデータ) (2021-03-11T01:15:26Z) - MRDet: A Multi-Head Network for Accurate Oriented Object Detection in
Aerial Images [51.227489316673484]
水平アンカーから変換された指向性提案を生成するために、任意指向領域提案ネットワーク(AO-RPN)を提案する。
正確なバウンディングボックスを得るために,検出タスクを複数のサブタスクに分離し,マルチヘッドネットワークを提案する。
各ヘッドは、対応するタスクに最適な特徴を学習するために特別に設計されており、ネットワークがオブジェクトを正確に検出することができる。
論文 参考訳(メタデータ) (2020-12-24T06:36:48Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
本稿では,フレーム予測と適切な設計による新規で頑健な非教師付きビデオ異常検出手法を提案する。
提案手法は,CUHK Avenueデータセット上で88.3%のフレームレベルAUROCスコアを得る。
論文 参考訳(メタデータ) (2020-11-05T11:34:12Z) - Reinforcement Learning for UAV Autonomous Navigation, Mapping and Target
Detection [36.79380276028116]
本研究では,無人航空機(UAV)に低高度レーダーを装備し,未知の環境下での飛行における共同検出・マッピング・ナビゲーション問題について検討する。
目的は、マッピング精度を最大化する目的で軌道を最適化することであり、目標検出の観点からは、測定が不十分な領域を避けることである。
論文 参考訳(メタデータ) (2020-05-05T20:39:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。