Reasoning Graph Enhanced Exemplars Retrieval for In-Context Learning
- URL: http://arxiv.org/abs/2409.11147v1
- Date: Tue, 17 Sep 2024 12:58:29 GMT
- Title: Reasoning Graph Enhanced Exemplars Retrieval for In-Context Learning
- Authors: Yukang Lin, Bingchen Zhong, Shuoran Jiang, Joanna Siebert, Qingcai Chen,
- Abstract summary: Reasoning Graph-enhanced Exemplar Retrieval(RGER)
RGER uses graph kernel to select exemplars with semantic and structural similarity.
The efficacy of RGER on math and logit reasoning tasks showcases its superiority over state-of-the-art retrieval-based approaches.
- Score: 13.381974811214764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models(LLMs) have exhibited remarkable few-shot learning capabilities and unified the paradigm of NLP tasks through the in-context learning(ICL) technique. Despite the success of ICL, the quality of the exemplar demonstrations can significantly influence the LLM's performance. Existing exemplar selection methods mainly focus on the semantic similarity between queries and candidate exemplars. On the other hand, the logical connections between reasoning steps can be beneficial to depict the problem-solving process as well. In this paper, we proposes a novel method named Reasoning Graph-enhanced Exemplar Retrieval(RGER). RGER first quires LLM to generate an initial response, then expresses intermediate problem-solving steps to a graph structure. After that, it employs graph kernel to select exemplars with semantic and structural similarity. Extensive experiments demonstrate the structural relationship is helpful to the alignment of queries and candidate exemplars. The efficacy of RGER on math and logit reasoning tasks showcases its superiority over state-of-the-art retrieval-based approaches. Our code is released at https://github.com/Yukang-Lin/RGER.
Related papers
- SocialGPT: Prompting LLMs for Social Relation Reasoning via Greedy Segment Optimization [70.11167263638562]
Social relation reasoning aims to identify relation categories such as friends, spouses, and colleagues from images.
We first present a simple yet well-crafted framework named name, which combines the perception capability of Vision Foundation Models (VFMs) and the reasoning capability of Large Language Models (LLMs) within a modular framework.
arXiv Detail & Related papers (2024-10-28T18:10:26Z) - DeTriever: Decoder-representation-based Retriever for Improving NL2SQL In-Context Learning [19.93800175353809]
DeTriever is a novel demonstration retrieval framework that learns a weighted combination of hidden states.
Our method significantly outperforms the state-of-the-art baselines on one-shot NL2 tasks.
arXiv Detail & Related papers (2024-06-12T06:33:54Z) - FastGAS: Fast Graph-based Annotation Selection for In-Context Learning [53.17606395275021]
In-context learning (ICL) empowers large language models (LLMs) to tackle new tasks by using a series of training instances as prompts.
Existing methods have proposed to select a subset of unlabeled examples for annotation.
We propose a graph-based selection method, FastGAS, designed to efficiently identify high-quality instances.
arXiv Detail & Related papers (2024-06-06T04:05:54Z) - Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
Task planning in language agents is emerging as an important research topic alongside the development of large language models (LLMs)
In this paper, we explore graph learning-based methods for task planning, a direction that is to the prevalent focus on prompt design.
Our interest in graph learning stems from a theoretical discovery: the biases of attention and auto-regressive loss impede LLMs' ability to effectively navigate decision-making on graphs.
arXiv Detail & Related papers (2024-05-29T14:26:24Z) - Chain of Thoughtlessness? An Analysis of CoT in Planning [17.329365493094542]
Large language model (LLM) performance on reasoning problems typically does not generalize out of distribution.
This paper presents a case study of chain of thought on problems from Blocksworld, a classical planning domain.
We find meaningful performance improvements from chain of thought prompts when those prompts are exceedingly specific to their problem class.
arXiv Detail & Related papers (2024-05-08T02:48:28Z) - Learning to Retrieve In-Context Examples for Large Language Models [69.9707552694766]
Large language models (LLMs) have demonstrated their ability to learn in-context.
The effectiveness of in-context learning is heavily reliant on the quality of the selected examples.
We propose a novel framework to iteratively train dense retrievers that can identify high-quality in-context examples.
arXiv Detail & Related papers (2023-07-14T05:23:08Z) - RetICL: Sequential Retrieval of In-Context Examples with Reinforcement Learning [53.52699766206808]
We propose Retrieval for In-Context Learning (RetICL), a learnable method for modeling and optimally selecting examples sequentially for in-context learning.
We evaluate RetICL on math word problem solving and scientific question answering tasks and show that it consistently outperforms or matches and learnable baselines.
arXiv Detail & Related papers (2023-05-23T20:15:56Z) - Compositional Exemplars for In-context Learning [21.961094715261133]
Large pretrained language models (LMs) have shown impressive In-Context Learning (ICL) ability.
We propose CEIL (Compositional Exemplars for In-context Learning) to model the interaction between the given input and in-context examples.
We validate CEIL on 12 classification and generation datasets from 7 distinct NLP tasks, including sentiment analysis, paraphrase detection, natural language inference, commonsense reasoning, open-domain question answering, code generation, and semantic parsing.
arXiv Detail & Related papers (2023-02-11T14:02:08Z) - Why Settle for Just One? Extending EL++ Ontology Embeddings with
Many-to-Many Relationships [2.599882743586164]
Knowledge Graph embeddings provide a low-dimensional representation of entities and relations of a Knowledge Graph.
Recent efforts in this direction involve learning embeddings for a Description (logical Logic for a description) named EL++.
We provide a simple and effective solution that allows such methods to consider many-to-many relationships while learning embedding representations.
arXiv Detail & Related papers (2021-10-20T13:23:18Z) - How Fine-Tuning Allows for Effective Meta-Learning [50.17896588738377]
We present a theoretical framework for analyzing representations derived from a MAML-like algorithm.
We provide risk bounds on the best predictor found by fine-tuning via gradient descent, demonstrating that the algorithm can provably leverage the shared structure.
This separation result underscores the benefit of fine-tuning-based methods, such as MAML, over methods with "frozen representation" objectives in few-shot learning.
arXiv Detail & Related papers (2021-05-05T17:56:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.