High-Order Evolving Graphs for Enhanced Representation of Traffic Dynamics
- URL: http://arxiv.org/abs/2409.11206v2
- Date: Wed, 18 Sep 2024 09:57:28 GMT
- Title: High-Order Evolving Graphs for Enhanced Representation of Traffic Dynamics
- Authors: Aditya Humnabadkar, Arindam Sikdar, Benjamin Cave, Huaizhong Zhang, Paul Bakaki, Ardhendu Behera,
- Abstract summary: We present an innovative framework for traffic dynamics analysis using High-Order Evolving Graphs, designed to improve representations in autonomous driving.
Our approach constructs bidirectional temporal bipartite graphs that effectively model the complex interactions within traffic scenes in real-time.
- Score: 4.856478623606766
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present an innovative framework for traffic dynamics analysis using High-Order Evolving Graphs, designed to improve spatio-temporal representations in autonomous driving contexts. Our approach constructs temporal bidirectional bipartite graphs that effectively model the complex interactions within traffic scenes in real-time. By integrating Graph Neural Networks (GNNs) with high-order multi-aggregation strategies, we significantly enhance the modeling of traffic scene dynamics, providing a more accurate and detailed analysis of these interactions. Additionally, we incorporate inductive learning techniques inspired by the GraphSAGE framework, enabling our model to adapt to new and unseen traffic scenarios without the need for retraining, thus ensuring robust generalization. Through extensive experiments on the ROAD and ROAD Waymo datasets, we establish a comprehensive baseline for further developments, demonstrating the potential of our method in accurately capturing traffic behavior. Our results emphasize the value of high-order statistical moments and feature-gated attention mechanisms in improving traffic behavior analysis, laying the groundwork for advancing autonomous driving technologies. Our source code is available at: https://github.com/Addy-1998/High_Order_Graphs
Related papers
- Deep Learning-driven Mobile Traffic Measurement Collection and Analysis [0.43512163406552007]
In this thesis, we harness the powerful hierarchical feature learning abilities of Deep Learning (DL) techniques in both spatial and temporal domains.
We develop solutions for precise city-scale mobile traffic analysis and forecasting.
arXiv Detail & Related papers (2024-10-14T06:53:45Z) - Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
Graph unlearning has emerged as an essential tool for safeguarding user privacy and mitigating the negative impacts of undesirable data.
With the increasing prevalence of DGNNs, it becomes imperative to investigate the implementation of dynamic graph unlearning.
We propose an effective, efficient, model-agnostic, and post-processing method to implement DGNN unlearning.
arXiv Detail & Related papers (2024-05-23T10:26:18Z) - Attention-based Dynamic Graph Convolutional Recurrent Neural Network for
Traffic Flow Prediction in Highway Transportation [0.6650227510403052]
Attention-based Dynamic Graph Convolutional Recurrent Neural Network (ADG-N) is proposed to improve traffic flow prediction in highway transportation.
A dedicated gated kernel emphasizing highly relative nodes is introduced on complete graphs to reduce overfitting for graph convolution operations.
arXiv Detail & Related papers (2023-09-13T13:57:21Z) - Attention-based Spatial-Temporal Graph Neural ODE for Traffic Prediction [3.4806267677524896]
We propose attention-based graph neural ODE (AST) that explicitly learns the dynamics of the traffic system.
Our model aggregates traffic patterns of different periods and has satisfactory performance on two real-world traffic data sets.
arXiv Detail & Related papers (2023-05-01T00:58:48Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
This paper aims to design an easy-to-use pipeline (termed as EasyDGL) composed of three key modules with both strong ability fitting and interpretability.
EasyDGL can effectively quantify the predictive power of frequency content that a model learn from the evolving graph data.
arXiv Detail & Related papers (2023-03-22T06:35:08Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Spatial-Temporal Interactive Dynamic Graph Convolution Network for
Traffic Forecasting [1.52292571922932]
We propose a neural network-based Spatial-Temporal Interactive Dynamic Graph Convolutional Network (STIDGCN) for traffic forecasting in this paper.
In STIDGCN, we propose an interactive dynamic graph convolution structure, which first divides the sequences at intervals and captures the spatial-temporal dependence of the traffic data simultaneously.
Experiments on four real-world traffic flow datasets demonstrate that STIDGCN outperforms the state-of-the-art baseline.
arXiv Detail & Related papers (2022-05-18T01:59:30Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - Dynamic Graph Convolutional Recurrent Network for Traffic Prediction:
Benchmark and Solution [18.309299822858243]
We propose a novel traffic prediction framework, named Dynamic Graph Contemporalal Recurrent Network (DGCRN)
In DGCRN, hyper-networks are designed to leverage and extract dynamic characteristics from node attributes.
We are the first to employ a generation method to model fine iteration of dynamic graph at each time step.
arXiv Detail & Related papers (2021-04-30T11:25:43Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.