論文の概要: Learning Source Disentanglement in Neural Audio Codec
- arxiv url: http://arxiv.org/abs/2409.11228v1
- Date: Tue, 17 Sep 2024 14:21:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 16:25:29.037299
- Title: Learning Source Disentanglement in Neural Audio Codec
- Title(参考訳): ニューラルオーディオコーデックにおける音源歪みの学習
- Authors: Xiaoyu Bie, Xubo Liu, Gaël Richard,
- Abstract要約: 我々は、音源符号化と音源分離を組み合わせた新しいアプローチである、ソース分散ニューラルオーディオコーデック(SD-Codec)を紹介する。
SD-Codecは、音声の合成と分離を共同で学習することで、異なるドメインからの音声信号を異なるコードブック(離散表現の集合)に明示的に割り当てる。
実験結果から,SD-Codecは競合的再合成品質を維持するだけでなく,分離結果に支えられ,潜伏空間における異なるソースの絡み合いが成功したことが示唆された。
- 参考スコア(独自算出の注目度): 20.335701584949526
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural audio codecs have significantly advanced audio compression by efficiently converting continuous audio signals into discrete tokens. These codecs preserve high-quality sound and enable sophisticated sound generation through generative models trained on these tokens. However, existing neural codec models are typically trained on large, undifferentiated audio datasets, neglecting the essential discrepancies between sound domains like speech, music, and environmental sound effects. This oversight complicates data modeling and poses additional challenges to the controllability of sound generation. To tackle these issues, we introduce the Source-Disentangled Neural Audio Codec (SD-Codec), a novel approach that combines audio coding and source separation. By jointly learning audio resynthesis and separation, SD-Codec explicitly assigns audio signals from different domains to distinct codebooks, sets of discrete representations. Experimental results indicate that SD-Codec not only maintains competitive resynthesis quality but also, supported by the separation results, demonstrates successful disentanglement of different sources in the latent space, thereby enhancing interpretability in audio codec and providing potential finer control over the audio generation process.
- Abstract(参考訳): ニューラルオーディオコーデックは、連続したオーディオ信号を離散トークンに効率よく変換することで、かなり高度なオーディオ圧縮を有する。
これらのコーデックは高品質な音を保存し、これらのトークンで訓練された生成モデルを通じて洗練された音を生成することができる。
しかし、既存のニューラルコーデックモデルは、通常、大きな、未分化のオーディオデータセットに基づいて訓練され、音声、音楽、環境音といった音領域間の重要な相違を無視している。
これはデータモデリングを複雑にし、音生成の制御性にさらなる課題をもたらす。
これらの問題に対処するために、オーディオ符号化とソース分離を組み合わせた新しいアプローチである Source-Disentangled Neural Audio Codec (SD-Codec) を導入する。
SD-Codecは、音声の合成と分離を共同で学習することで、異なるドメインからの音声信号を異なるコードブック(離散表現の集合)に明示的に割り当てる。
実験結果から,SD-Codecは競合再生品質を維持するだけでなく,分離結果に支えられ,遅延空間における異なるソースのアンタングル化を成功させ,オーディオコーデックの解釈可能性を高め,音声生成プロセスに対する潜在的な微妙な制御を提供することが示唆された。
関連論文リスト
- A Closer Look at Neural Codec Resynthesis: Bridging the Gap between Codec and Waveform Generation [65.05719674893999]
トークン予測と回帰に基づく2つの戦略について検討し,Schr"odinger Bridgeに基づく新しい手法を提案する。
異なるデザイン選択が機械と人間の知覚にどのように影響するかを検討する。
論文 参考訳(メタデータ) (2024-10-29T18:29:39Z) - LSCodec: Low-Bitrate and Speaker-Decoupled Discrete Speech Codec [14.7377193484733]
LSCodecは低話者分離能力と低話者分離能力を持つ離散音声である。
再構成実験により、LSCodecは、単一のコードブックだけで、ベースラインよりも語彙サイズが小さい、優れた知性およびオーディオ品質を示す。
論文 参考訳(メタデータ) (2024-10-21T08:23:31Z) - SNAC: Multi-Scale Neural Audio Codec [1.0753191494611891]
マルチスケールニューラルオーディオコーデックはRVQの単純な拡張であり、量子化器は異なる時間分解能で動作することができる。
本稿では,様々な時間分解能で量子化器を動作させることができるRVQの簡易拡張であるマルチスケールニューラルオーディオコーデックを提案する。
論文 参考訳(メタデータ) (2024-10-18T12:24:05Z) - Codec Does Matter: Exploring the Semantic Shortcoming of Codec for Audio Language Model [36.61105228468503]
X-Codecは、Residual Vector Quantizationステージの前に、事前訓練されたセマンティックエンコーダのセマンティック機能を組み込んでいる。
X-Codecは音声合成タスクのWERを大幅に削減し、これらの利点を非音声アプリケーションに拡張する。
音声合成における意味情報の統合は,音声生成における言語モデル全体の性能を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2024-08-30T10:24:07Z) - CoLM-DSR: Leveraging Neural Codec Language Modeling for Multi-Modal Dysarthric Speech Reconstruction [61.067153685104394]
変形性音声再建(DSR)は、変形性音声を正常な音声に変換することを目的としている。
話者の類似度は低く、プロソディの自然度は低い。
本稿では、ニューラルネットワークモデリングを利用して再構成結果を改善するマルチモーダルDSRモデルを提案する。
論文 参考訳(メタデータ) (2024-06-12T15:42:21Z) - SemantiCodec: An Ultra Low Bitrate Semantic Audio Codec for General Sound [40.810505707522324]
SemantiCodecは、様々なオーディオタイプで毎秒100トークン未満にオーディオを圧縮するように設計されている。
本稿では,セマンティコーデックが再現性に関する最先端の記述を著しく上回っていることを示す。
また,SemantiCodecはすべての評価音声コーデックよりもはるかにリッチな意味情報を含んでいることも示唆した。
論文 参考訳(メタデータ) (2024-04-30T22:51:36Z) - Large-scale unsupervised audio pre-training for video-to-speech
synthesis [64.86087257004883]
音声合成は、話者の無声映像から音声信号を再構成する作業である。
本稿では,24kHzで3,500時間以上のオーディオデータをエンコーダ・デコーダモデルでトレーニングすることを提案する。
次に、事前学習したデコーダを用いて、音声合成タスクの音声デコーダを初期化する。
論文 参考訳(メタデータ) (2023-06-27T13:31:33Z) - AudioGen: Textually Guided Audio Generation [116.57006301417306]
記述文キャプションに条件付き音声サンプルを生成する問題に対処する。
本研究では,テキスト入力に条件付き音声サンプルを生成する自動回帰モデルであるAaudioGenを提案する。
論文 参考訳(メタデータ) (2022-09-30T10:17:05Z) - AudioLM: a Language Modeling Approach to Audio Generation [59.19364975706805]
本稿では,長期的整合性を有する高品質オーディオ生成フレームワークであるAudioLMを紹介する。
本稿では,既存の音声トークンが,再建品質と長期構造との間に異なるトレードオフをもたらすことを示す。
我々は,コヒーレントピアノ音楽の継続を生成することによって,我々のアプローチが音声を超えてどのように拡張されるかを実証する。
論文 参考訳(メタデータ) (2022-09-07T13:40:08Z) - SoundStream: An End-to-End Neural Audio Codec [78.94923131038682]
本稿では,音声,音楽,一般音声を効率よく圧縮できる新しいニューラルオーディオシステムSoundStreamを紹介する。
SoundStreamは完全な畳み込みエンコーダ/デコーダネットワークと残留ベクトル量子化器に頼っている。
エンコーダまたはデコーダ側で、追加のレイテンシなしで、共同圧縮と拡張を行うことができます。
論文 参考訳(メタデータ) (2021-07-07T15:45:42Z) - Audio Dequantization for High Fidelity Audio Generation in Flow-based
Neural Vocoder [29.63675159839434]
フローベースのニューラルボコーダは、リアルタイム音声生成タスクにおいて大幅に改善されている。
フローベースニューラルボコーダにおける高忠実度音声生成のための音声復調手法を提案する。
論文 参考訳(メタデータ) (2020-08-16T09:37:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。