論文の概要: CoLM-DSR: Leveraging Neural Codec Language Modeling for Multi-Modal Dysarthric Speech Reconstruction
- arxiv url: http://arxiv.org/abs/2406.08336v2
- Date: Mon, 24 Jun 2024 06:09:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 00:13:51.675637
- Title: CoLM-DSR: Leveraging Neural Codec Language Modeling for Multi-Modal Dysarthric Speech Reconstruction
- Title(参考訳): CoLM-DSR: マルチモーダルな変形性音声再構成のためのニューラルコーデック言語モデリング
- Authors: Xueyuan Chen, Dongchao Yang, Dingdong Wang, Xixin Wu, Zhiyong Wu, Helen Meng,
- Abstract要約: 変形性音声再建(DSR)は、変形性音声を正常な音声に変換することを目的としている。
話者の類似度は低く、プロソディの自然度は低い。
本稿では、ニューラルネットワークモデリングを利用して再構成結果を改善するマルチモーダルDSRモデルを提案する。
- 参考スコア(独自算出の注目度): 61.067153685104394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dysarthric speech reconstruction (DSR) aims to transform dysarthric speech into normal speech. It still suffers from low speaker similarity and poor prosody naturalness. In this paper, we propose a multi-modal DSR model by leveraging neural codec language modeling to improve the reconstruction results, especially for the speaker similarity and prosody naturalness. Our proposed model consists of: (i) a multi-modal content encoder to extract robust phoneme embeddings from dysarthric speech with auxiliary visual inputs; (ii) a speaker codec encoder to extract and normalize the speaker-aware codecs from the dysarthric speech, in order to provide original timbre and normal prosody; (iii) a codec language model based speech decoder to reconstruct the speech based on the extracted phoneme embeddings and normalized codecs. Evaluations on the commonly used UASpeech corpus show that our proposed model can achieve significant improvements in terms of speaker similarity and prosody naturalness.
- Abstract(参考訳): 変形性音声再建(DSR)は、変形性音声を正常な音声に変換することを目的としている。
話者の類似度は低く、プロソディの自然度は低い。
本稿では,ニューラルコーデック言語モデリングを応用したマルチモーダルDSRモデルを提案する。
提案したモデルは以下の通りである。
i) 複数のモーダルコンテンツエンコーダを用いて,変形性音声からの強靭な音素埋め込みを補助的な視覚入力で抽出すること。
2 変形性音声から話者認識コーデックを抽出し、正常化するスピーカコーデックエンコーダであって、本来の音色及び正常韻律を提供するもの
三 コーデック言語モデルに基づく音声デコーダで、抽出した音素埋め込みと正規化コーデックに基づいて音声を再構成する。
UASpeech corpus を用いた評価の結果,提案手法は話者の類似性や韻律の自然性において有意な改善が得られた。
関連論文リスト
- Coding Speech through Vocal Tract Kinematics [5.0751585360524425]
調音特徴は声道調音器のキネマティックな形状と音源の特徴の痕跡であり、直感的に解釈可能で制御可能である。
話者埋め込みは音節から効果的に切り離され、アクセントを保ったゼロショット音声変換が可能となる。
論文 参考訳(メタデータ) (2024-06-18T18:38:17Z) - Non-autoregressive real-time Accent Conversion model with voice cloning [0.0]
我々は音声クローンを用いたリアルタイムアクセント変換のための非自己回帰モデルを開発した。
このモデルは入力L2音声に基づいて最小レイテンシでネイティブなL1音声を生成する。
このモデルは、話者の声の音色、性別、アクセントをリアルタイムで保存し、クローンし、変更することができる。
論文 参考訳(メタデータ) (2024-05-21T19:07:26Z) - SpeechAlign: Aligning Speech Generation to Human Preferences [51.684183257809075]
本稿では,言語モデルと人間の嗜好を一致させる反復的自己改善戦略であるSpeechAlignを紹介する。
我々は、SpeechAlignが分散ギャップを埋め、言語モデルの継続的自己改善を促進することができることを示す。
論文 参考訳(メタデータ) (2024-04-08T15:21:17Z) - Generalizable Zero-Shot Speaker Adaptive Speech Synthesis with
Disentangled Representations [12.388567657230116]
一般化可能なゼロショット話者適応音声変換モデルを提案する。
GZS-TVは、話者埋め込み抽出と音色変換のための不整合表現学習を導入した。
実験により、GZS-TVは、目に見えない話者の性能劣化を低減し、複数のデータセットで全てのベースラインモデルより優れていることが示された。
論文 参考訳(メタデータ) (2023-08-24T18:13:10Z) - On decoder-only architecture for speech-to-text and large language model
integration [59.49886892602309]
Speech-LLaMAは、音声情報をテキストベースの大規模言語モデルに効果的に組み込む新しいアプローチである。
我々は多言語音声からテキストへの翻訳タスクの実験を行い、強いベースラインよりも大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2023-07-08T06:47:58Z) - Streaming Speaker-Attributed ASR with Token-Level Speaker Embeddings [53.11450530896623]
本稿では,「誰が何を話したか」を認識可能な,ストリーミング話者対応自動音声認識(SA-ASR)モデルを提案する。
本モデルは,最近提案されたマルチトーカー音声をストリーミング形式で書き起こすためのトークンレベルシリアライズアウトプットトレーニング(t-SOT)に基づいている。
提案モデルでは,従来のストリーミングモデルよりも精度が大幅に向上し,最先端のオフラインSA-ASRモデルに匹敵する,あるいは時として優れた結果が得られる。
論文 参考訳(メタデータ) (2022-03-30T21:42:00Z) - Revisiting joint decoding based multi-talker speech recognition with DNN
acoustic model [34.061441900912136]
このようなスキームは準最適であり、すべての話者を共同で復号する原理的解法を提案する。
本研究では,全ての話者の関節後部状態を予測するために音響モデルを改良し,話者への音声信号の一部の帰属に関する不確実性をネットワークが表現できるようにする。
論文 参考訳(メタデータ) (2021-10-31T09:28:04Z) - End-to-End Video-To-Speech Synthesis using Generative Adversarial
Networks [54.43697805589634]
GAN(Generative Adversarial Networks)に基づくエンドツーエンドビデオ音声合成モデルを提案する。
本モデルは,生映像を入力として受信し,音声を生成するエンコーダ・デコーダアーキテクチャで構成されている。
このモデルは,グリッドなどの制約付きデータセットに対して,顕著なリアリズムで音声を再構成できることを示す。
論文 参考訳(メタデータ) (2021-04-27T17:12:30Z) - Learning Explicit Prosody Models and Deep Speaker Embeddings for
Atypical Voice Conversion [60.808838088376675]
本稿では,明示的な韻律モデルと深層話者埋め込み学習を用いたVCシステムを提案する。
韻律補正器は音素埋め込みを取り入れ、典型的な音素持続時間とピッチ値を推定する。
変換モデルは、音素埋め込みと典型的な韻律特徴を入力として、変換された音声を生成する。
論文 参考訳(メタデータ) (2020-11-03T13:08:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。