SLAck: Semantic, Location, and Appearance Aware Open-Vocabulary Tracking
- URL: http://arxiv.org/abs/2409.11235v1
- Date: Tue, 17 Sep 2024 14:36:58 GMT
- Title: SLAck: Semantic, Location, and Appearance Aware Open-Vocabulary Tracking
- Authors: Siyuan Li, Lei Ke, Yung-Hsu Yang, Luigi Piccinelli, Mattia Segù, Martin Danelljan, Luc Van Gool,
- Abstract summary: Open-vocabulary Multiple Object Tracking (MOT) aims to generalize trackers to novel categories not in the training set.
We present a unified framework that jointly considers semantics, location, and appearance priors in the early steps of association.
Our method eliminates complex post-processings for fusing different cues and boosts the association performance significantly for large-scale open-vocabulary tracking.
- Score: 89.43370214059955
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Open-vocabulary Multiple Object Tracking (MOT) aims to generalize trackers to novel categories not in the training set. Currently, the best-performing methods are mainly based on pure appearance matching. Due to the complexity of motion patterns in the large-vocabulary scenarios and unstable classification of the novel objects, the motion and semantics cues are either ignored or applied based on heuristics in the final matching steps by existing methods. In this paper, we present a unified framework SLAck that jointly considers semantics, location, and appearance priors in the early steps of association and learns how to integrate all valuable information through a lightweight spatial and temporal object graph. Our method eliminates complex post-processing heuristics for fusing different cues and boosts the association performance significantly for large-scale open-vocabulary tracking. Without bells and whistles, we outperform previous state-of-the-art methods for novel classes tracking on the open-vocabulary MOT and TAO TETA benchmarks. Our code is available at \href{https://github.com/siyuanliii/SLAck}{github.com/siyuanliii/SLAck}.
Related papers
- VOVTrack: Exploring the Potentiality in Videos for Open-Vocabulary Object Tracking [61.56592503861093]
This issue amalgamates the complexities of open-vocabulary object detection (OVD) and multi-object tracking (MOT)
Existing approaches to OVMOT often merge OVD and MOT methodologies as separate modules, predominantly focusing on the problem through an image-centric lens.
We propose VOVTrack, a novel method that integrates object states relevant to MOT and video-centric training to address this challenge from a video object tracking standpoint.
arXiv Detail & Related papers (2024-10-11T05:01:49Z) - Hierarchical Temporal Context Learning for Camera-based Semantic Scene Completion [57.232688209606515]
We present HTCL, a novel Temporal Temporal Context Learning paradigm for improving camera-based semantic scene completion.
Our method ranks $1st$ on the Semantic KITTI benchmark and even surpasses LiDAR-based methods in terms of mIoU.
arXiv Detail & Related papers (2024-07-02T09:11:17Z) - Semantic Enhanced Few-shot Object Detection [37.715912401900745]
We propose a fine-tuning based FSOD framework that utilizes semantic embeddings for better detection.
Our method allows each novel class to construct a compact feature space without being confused with similar base classes.
arXiv Detail & Related papers (2024-06-19T12:40:55Z) - Learning to Detour: Shortcut Mitigating Augmentation for Weakly Supervised Semantic Segmentation [7.5856806269316825]
Weakly supervised semantic segmentation (WSSS) employing weak forms of labels has been actively studied to alleviate the annotation cost of acquiring pixel-level labels.
We propose shortcut mitigating augmentation (SMA) for WSSS, which generates synthetic representations of object-background combinations not seen in the training data to reduce the use of shortcut features.
arXiv Detail & Related papers (2024-05-28T13:07:35Z) - Open-Vocabulary Object Detection with Meta Prompt Representation and Instance Contrastive Optimization [63.66349334291372]
We propose a framework with Meta prompt and Instance Contrastive learning (MIC) schemes.
Firstly, we simulate a novel-class-emerging scenario to help the prompt that learns class and background prompts generalize to novel classes.
Secondly, we design an instance-level contrastive strategy to promote intra-class compactness and inter-class separation, which benefits generalization of the detector to novel class objects.
arXiv Detail & Related papers (2024-03-14T14:25:10Z) - OVTrack: Open-Vocabulary Multiple Object Tracking [64.73379741435255]
OVTrack is an open-vocabulary tracker capable of tracking arbitrary object classes.
It sets a new state-of-the-art on the large-scale, large-vocabulary TAO benchmark.
arXiv Detail & Related papers (2023-04-17T16:20:05Z) - FineDiving: A Fine-grained Dataset for Procedure-aware Action Quality
Assessment [93.09267863425492]
We argue that understanding both high-level semantics and internal temporal structures of actions in competitive sports videos is the key to making predictions accurate and interpretable.
We construct a new fine-grained dataset, called FineDiving, developed on diverse diving events with detailed annotations on action procedures.
arXiv Detail & Related papers (2022-04-07T17:59:32Z) - A Closer Look at Few-Shot Video Classification: A New Baseline and
Benchmark [33.86872697028233]
We present an in-depth study on few-shot video classification by making three contributions.
First, we perform a consistent comparative study on the existing metric-based methods to figure out their limitations in representation learning.
Second, we discover that there is a high correlation between the novel action class and the ImageNet object class, which is problematic in the few-shot recognition setting.
Third, we present a new benchmark with more base data to facilitate future few-shot video classification without pre-training.
arXiv Detail & Related papers (2021-10-24T06:01:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.