Open-Vocabulary Object Detection with Meta Prompt Representation and Instance Contrastive Optimization
- URL: http://arxiv.org/abs/2403.09433v1
- Date: Thu, 14 Mar 2024 14:25:10 GMT
- Title: Open-Vocabulary Object Detection with Meta Prompt Representation and Instance Contrastive Optimization
- Authors: Zhao Wang, Aoxue Li, Fengwei Zhou, Zhenguo Li, Qi Dou,
- Abstract summary: We propose a framework with Meta prompt and Instance Contrastive learning (MIC) schemes.
Firstly, we simulate a novel-class-emerging scenario to help the prompt that learns class and background prompts generalize to novel classes.
Secondly, we design an instance-level contrastive strategy to promote intra-class compactness and inter-class separation, which benefits generalization of the detector to novel class objects.
- Score: 63.66349334291372
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Classical object detectors are incapable of detecting novel class objects that are not encountered before. Regarding this issue, Open-Vocabulary Object Detection (OVOD) is proposed, which aims to detect the objects in the candidate class list. However, current OVOD models are suffering from overfitting on the base classes, heavily relying on the large-scale extra data, and complex training process. To overcome these issues, we propose a novel framework with Meta prompt and Instance Contrastive learning (MIC) schemes. Firstly, we simulate a novel-class-emerging scenario to help the prompt learner that learns class and background prompts generalize to novel classes. Secondly, we design an instance-level contrastive strategy to promote intra-class compactness and inter-class separation, which benefits generalization of the detector to novel class objects. Without using knowledge distillation, ensemble model or extra training data during detector training, our proposed MIC outperforms previous SOTA methods trained with these complex techniques on LVIS. Most importantly, MIC shows great generalization ability on novel classes, e.g., with $+4.3\%$ and $+1.9\% \ \mathrm{AP}$ improvement compared with previous SOTA on COCO and Objects365, respectively.
Related papers
- UIFormer: A Unified Transformer-based Framework for Incremental Few-Shot Object Detection and Instance Segmentation [38.331860053615955]
This paper introduces a novel framework for unified incremental few-shot object detection (iFSOD) and instance segmentation (iFSIS) using the Transformer architecture.
Our goal is to create an optimal solution for situations where only a few examples of novel object classes are available.
arXiv Detail & Related papers (2024-11-13T12:29:44Z) - Exploiting Unlabeled Data with Multiple Expert Teachers for Open Vocabulary Aerial Object Detection and Its Orientation Adaptation [58.37525311718006]
We put forth a novel formulation of the aerial object detection problem, namely open-vocabulary aerial object detection (OVAD)
We propose CastDet, a CLIP-activated student-teacher detection framework that serves as the first OVAD detector specifically designed for the challenging aerial scenario.
Our framework integrates a robust localization teacher along with several box selection strategies to generate high-quality proposals for novel objects.
arXiv Detail & Related papers (2024-11-04T12:59:13Z) - Semantic Enhanced Few-shot Object Detection [37.715912401900745]
We propose a fine-tuning based FSOD framework that utilizes semantic embeddings for better detection.
Our method allows each novel class to construct a compact feature space without being confused with similar base classes.
arXiv Detail & Related papers (2024-06-19T12:40:55Z) - Fine-Grained Prototypes Distillation for Few-Shot Object Detection [8.795211323408513]
Few-shot object detection (FSOD) aims at extending a generic detector for novel object detection with only a few training examples.
In general, methods based on meta-learning employ an additional support branch to encode novel examples into class prototypes.
New methods are required to capture the distinctive local context for more robust novel object detection.
arXiv Detail & Related papers (2024-01-15T12:12:48Z) - Few-Shot Object Detection via Association and DIscrimination [83.8472428718097]
Few-shot object detection via Association and DIscrimination builds up a discriminative feature space for each novel class with two integral steps.
Experiments on Pascal VOC and MS-COCO datasets demonstrate FADI achieves new SOTA performance, significantly improving the baseline in any shot/split by +18.7.
arXiv Detail & Related papers (2021-11-23T05:04:06Z) - Bridging Non Co-occurrence with Unlabeled In-the-wild Data for
Incremental Object Detection [56.22467011292147]
Several incremental learning methods are proposed to mitigate catastrophic forgetting for object detection.
Despite the effectiveness, these methods require co-occurrence of the unlabeled base classes in the training data of the novel classes.
We propose the use of unlabeled in-the-wild data to bridge the non-occurrence caused by the missing base classes during the training of additional novel classes.
arXiv Detail & Related papers (2021-10-28T10:57:25Z) - Multi-View Correlation Distillation for Incremental Object Detection [12.536640582318949]
We propose a novel textbfMulti-textbfView textbfCorrelation textbfDistillation (MVCD) based incremental object detection method.
arXiv Detail & Related papers (2021-07-05T04:36:33Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
arXiv Detail & Related papers (2020-06-12T22:45:47Z) - Incremental Few-Shot Object Detection [96.02543873402813]
OpeN-ended Centre nEt is a detector for incrementally learning to detect class objects with few examples.
ONCE fully respects the incremental learning paradigm, with novel class registration requiring only a single forward pass of few-shot training samples.
arXiv Detail & Related papers (2020-03-10T12:56:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.