論文の概要: TTT-Unet: Enhancing U-Net with Test-Time Training Layers for Biomedical Image Segmentation
- arxiv url: http://arxiv.org/abs/2409.11299v2
- Date: Wed, 18 Sep 2024 19:43:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-20 11:13:42.101938
- Title: TTT-Unet: Enhancing U-Net with Test-Time Training Layers for Biomedical Image Segmentation
- Title(参考訳): TTT-Unet: バイオメディカルイメージセグメンテーションのためのテスト時間トレーニング層によるU-Netの強化
- Authors: Rong Zhou, Zhengqing Yuan, Zhiling Yan, Weixiang Sun, Kai Zhang, Yiwei Li, Yanfang Ye, Xiang Li, Lifang He, Lichao Sun,
- Abstract要約: TTT-Unetは、テストタイムトレーニング層をバイオメディカルイメージセグメンテーションのための従来のU-Netアーキテクチャに統合する新しいフレームワークである。
TTT-Unetは,CTおよびMR画像における3次元腹部臓器の分画,内視鏡画像における計器の分画,顕微鏡画像における細胞分画など,複数の医用画像データセット上で評価される。
- 参考スコア(独自算出の注目度): 28.21682021877434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biomedical image segmentation is crucial for accurately diagnosing and analyzing various diseases. However, Convolutional Neural Networks (CNNs) and Transformers, the most commonly used architectures for this task, struggle to effectively capture long-range dependencies due to the inherent locality of CNNs and the computational complexity of Transformers. To address this limitation, we introduce TTT-Unet, a novel framework that integrates Test-Time Training (TTT) layers into the traditional U-Net architecture for biomedical image segmentation. TTT-Unet dynamically adjusts model parameters during the testing time, enhancing the model's ability to capture both local and long-range features. We evaluate TTT-Unet on multiple medical imaging datasets, including 3D abdominal organ segmentation in CT and MR images, instrument segmentation in endoscopy images, and cell segmentation in microscopy images. The results demonstrate that TTT-Unet consistently outperforms state-of-the-art CNN-based and Transformer-based segmentation models across all tasks. The code is available at https://github.com/rongzhou7/TTT-Unet.
- Abstract(参考訳): バイオメディカルイメージセグメンテーションは、様々な疾患を正確に診断し、分析するために重要である。
しかし、このタスクに最もよく使用されるアーキテクチャである畳み込みニューラルネットワーク(CNN)とトランスフォーマーは、CNN固有の局所性とトランスフォーマーの計算複雑性のために、長距離依存を効果的に捉えるのに苦労する。
バイオメディカルイメージセグメンテーションのための従来のU-Netアーキテクチャにテスト時間トレーニング(TTT)層を統合する新しいフレームワークであるTT-Unetを導入する。
TTT-Unetはテスト期間中にモデルパラメータを動的に調整し、局所的特徴と長距離的特徴の両方をキャプチャするモデルの能力を向上する。
TTT-Unetは,CTおよびMR画像における3次元腹部臓器の分画,内視鏡画像における計器の分画,顕微鏡画像における細胞分画など,複数の医用画像データセット上で評価される。
その結果,TT-Unetは全タスクにおける最先端CNNベースおよびトランスフォーマーベースセグメンテーションモデルより一貫して優れていた。
コードはhttps://github.com/rongzhou7/TTT-Unet.comで公開されている。
関連論文リスト
- Med-TTT: Vision Test-Time Training model for Medical Image Segmentation [5.318153305245246]
We propose Med-TTT, a visual backbone network with Test-Time Training layer。
このモデルは精度、感度、Dice係数の点で先行的な性能を達成する。
論文 参考訳(メタデータ) (2024-10-03T14:29:46Z) - TBConvL-Net: A Hybrid Deep Learning Architecture for Robust Medical Image Segmentation [6.013821375459473]
医用画像セグメンテーションのための新しいディープラーニングアーキテクチャを提案する。
提案モデルでは,10の公開データセット上でのテクニックの現状に対して,一貫した改善が示されている。
論文 参考訳(メタデータ) (2024-09-05T09:14:03Z) - U-Mamba: Enhancing Long-range Dependency for Biomedical Image
Segmentation [10.083902382768406]
バイオメディカルイメージセグメンテーションのための汎用ネットワークであるU-Mambaを紹介する。
ディープシークエンスモデルの新たなファミリーであるState Space Sequence Models (SSM) にインスパイアされ、我々はハイブリッドCNN-SSMブロックを設計する。
我々は,CTおよびMR画像における腹部臓器の3次元分節化,内視鏡画像における計器の分節化,顕微鏡画像における細胞分節化の4つの課題について実験を行った。
論文 参考訳(メタデータ) (2024-01-09T18:53:20Z) - Learning from partially labeled data for multi-organ and tumor
segmentation [102.55303521877933]
本稿では,トランスフォーマーに基づく動的オンデマンドネットワーク(TransDoDNet)を提案する。
動的ヘッドにより、ネットワークは複数のセグメンテーションタスクを柔軟に達成することができる。
我々はMOTSと呼ばれる大規模にラベル付けされたMulti-Organ and tumorベンチマークを作成し、他の競合相手よりもTransDoDNetの方が優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-13T13:03:09Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
医用画像セグメンテーションのためのトランスフォーマーベースUNetを提案する。
グローバルな意味情報と局所的な空間的詳細特徴を同時に学習する。
MISSUは従来の最先端手法よりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2022-06-02T07:38:53Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - UNetFormer: A Unified Vision Transformer Model and Pre-Training
Framework for 3D Medical Image Segmentation [14.873473285148853]
UNetFormerと呼ばれる2つのアーキテクチャで構成され,3D Swin TransformerベースのエンコーダとConal Neural Network(CNN)とTransformerベースのデコーダを備えている。
提案モデルでは, 5つの異なる解像度でのスキップ接続により, エンコーダをデコーダにリンクする。
本稿では,ランダムにマスクされたトークンを予測する学習を通じて,エンコーダバックボーンの自己教師付き事前学習手法を提案する。
論文 参考訳(メタデータ) (2022-04-01T17:38:39Z) - Transformer-Unet: Raw Image Processing with Unet [4.7944896477309555]
Unetの機能マップの代わりに、生画像にトランスフォーマーモジュールを追加することで、Transformer-Unetを提案する。
実験では、エンド・ツー・エンドのネットワークを構築し、従来の多くのUnetベースのアルゴリズムよりもセグメンテーション結果を得る。
論文 参考訳(メタデータ) (2021-09-17T09:03:10Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
空間変換器ネットワーク(STN)を利用することにより、ポーズとスケール不変の新たなCNNアーキテクチャを提案する。
私たちのアーキテクチャは、トレーニング中に一緒に見積もられる3つのシーケンシャルモジュールで構成されています。
腹部CTスキャナーを用いた腎および腎腫瘍の分節法について検討した。
論文 参考訳(メタデータ) (2021-07-06T14:50:03Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
畳み込みニューラルネットワーク(CNN)は、現代の3D医療画像セグメンテーションのデファクトスタンダードとなっている。
本稿では,bf畳み込みニューラルネットワークとbfトランスbf(cotr)を効率良く橋渡しし,正確な3次元医用画像分割を実現する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-03-04T13:34:22Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
医用画像のセグメンテーションは医療システムの開発に必須の前提条件である。
様々な医療画像セグメンテーションタスクにおいて、U-Netとして知られるu字型アーキテクチャがデファクトスタンダードとなっている。
医用画像セグメンテーションの強力な代替手段として,トランスフォーマーとU-Netの両方を有効活用するTransUNetを提案する。
論文 参考訳(メタデータ) (2021-02-08T16:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。