Quantum-limited optical lever measurement of a torsion oscillator
- URL: http://arxiv.org/abs/2409.11397v1
- Date: Tue, 17 Sep 2024 17:56:02 GMT
- Title: Quantum-limited optical lever measurement of a torsion oscillator
- Authors: Christian M. Pluchar, Aman R. Agrawal, Dalziel J. Wilson,
- Abstract summary: We describe optical lever measurements on Si$_3$N$_4$ nanoribbons possessing $Q>3times 107$ torsion modes with torque sensitivities of $10-20,textN m/sqrttextHz$ and zero-point displacement spectral densities of $10-10,textrad/sqrttextHz$.
Our study signals the potential for a new class of torsional quantum optomechanics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The optical lever is a precision displacement sensor with broad applications. In principle, it can track the motion of a mechanical oscillator with added noise at the Standard Quantum Limit (SQL); however, demonstrating this performance requires an oscillator with an exceptionally high torque sensitivity, or, equivalently, zero-point angular displacement spectral density. Here, we describe optical lever measurements on Si$_3$N$_4$ nanoribbons possessing $Q>3\times 10^7$ torsion modes with torque sensitivities of $10^{-20}\,\text{N m}/\sqrt{\text{Hz}}$ and zero-point displacement spectral densities of $10^{-10}\,\text{rad}/\sqrt{\text{Hz}}$. Compensating aberrations and leveraging immunity to classical intensity noise, we realize angular displacement measurements with imprecisions 20 dB below the SQL and demonstrate feedback cooling, using a position modulated laser beam as a torque actuator, from room temperature to $\sim5000$ phonons. Our study signals the potential for a new class of torsional quantum optomechanics.
Related papers
- Laser cooling a centimeter-scale torsion pendulum [0.559239450391449]
We laser cool a centimeter-scale torsion pendulum to a temperature of 10 mK (average occupancy of 6000 phonons) starting from room temperature.
This is achieved by optical radiation pressure forces conditioned on anoise-limited optical measurement of quantum pendulum's angular displacement.
The measurement sensitivity is the result of a novel mirrored' optical lever that passively rejects extraneous spatial-mode noise by 60 dB.
arXiv Detail & Related papers (2024-09-03T20:20:38Z) - In-situ-tunable spin-spin interactions in a Penning trap with in-bore
optomechanics [41.94295877935867]
We present an optomechanical system for in-situ tuning of the coherent spin-motion and spin-spin interaction strength.
We characterize the system using measurements of the induced mean-field spin precession.
These experiments show approximately a $times2$ variation in the ratio of the coherent to incoherent interaction strength.
arXiv Detail & Related papers (2024-01-31T11:00:39Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Phononically shielded photonic-crystal mirror membranes for cavity
quantum optomechanics [48.7576911714538]
We present a highly reflective, sub-wavelength-thick membrane resonator featuring high mechanical quality factor.
We construct a Fabry-Perot-type optical cavity, with the membrane forming one terminating mirror.
We demonstrate optomechanical sideband cooling to mK-mode temperatures, starting from room temperature.
arXiv Detail & Related papers (2022-12-23T04:53:04Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - First-step experiment in developing optical-spring quantum locking for
DECIGO: sensitivity optimization for simulated quantum noise by completing
the square [1.7030294562102306]
DECIGO has 1,000-km-long arm cavities mainly to detect primordial gravitational waves (PGW) at lower around 0.1 Hz.
We experimentally verify one key element of the optical-spring quantum locking: sensitivity optimization by completing the square of multiple detector outputs.
arXiv Detail & Related papers (2022-11-23T03:32:10Z) - Quantum-enhanced sensing of displacements and electric fields with large
trapped-ion crystals [0.0]
We realize a many-body quantum-enhanced sensor to detect weak displacements and electric fields using a large crystal of $sim 150$ trapped ions.
We report quantum enhanced sensitivity to displacements of $8.8 pm 0.4$dB below the standard quantum limit and a sensitivity for measuring electric fields of $240pm10mathrmnVmathrmm-1$ in $1$ second.
arXiv Detail & Related papers (2021-03-15T20:20:57Z) - High-Frequency Gravitational-Wave Detection Using a Chiral Resonant
Mechanical Element and a Short Unstable Optical Cavity [59.66860395002946]
We suggest the measurement of the twist of a chiral mechanical element induced by a gravitational wave.
The induced twist rotates a flat optical mirror on top of this chiral element, leading to the deflection of an incident laser beam.
We estimate a gravitational wave strain sensitivity between 10-21/sqrtHz and 10-23/sqrtHz at around 10 kHz frequency.
arXiv Detail & Related papers (2020-07-15T20:09:43Z) - Force and acceleration sensing with optically levitated nanogram masses
at microkelvin temperatures [57.72546394254112]
This paper demonstrates cooling of the center-of-mass motion of 10 $mu$m-diameter optically levitated silica spheres to an effective temperature of $50pm22 mu$K.
It is shown that under these conditions the spheres remain stably trapped at pressures of $sim 10-7$ mbar with no active cooling for periods longer than a day.
arXiv Detail & Related papers (2020-01-29T16:20:35Z) - High Q mg-scale monolithic pendulum for quantum-limited gravity
measurements [0.0]
We present a high $Q$ monolithic silica pendulum weighing 7 mg.
The measured $Q$ value for the pendulum mode at 2.2 Hz was $2.0times106$.
arXiv Detail & Related papers (2019-12-29T02:15:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.