Generated Data with Fake Privacy: Hidden Dangers of Fine-tuning Large Language Models on Generated Data
- URL: http://arxiv.org/abs/2409.11423v2
- Date: Wed, 29 Jan 2025 18:27:16 GMT
- Title: Generated Data with Fake Privacy: Hidden Dangers of Fine-tuning Large Language Models on Generated Data
- Authors: Atilla Akkus, Masoud Poorghaffar Aghdam, Mingjie Li, Junjie Chu, Michael Backes, Yang Zhang, Sinem Sav,
- Abstract summary: This study investigates whether fine-tuning with generated data truly enhances privacy or introduces additional privacy risks.
We use the Pythia Model Suite and Open Pre-trained Transformer to measure privacy risks.
- Score: 18.984529269623135
- License:
- Abstract: Large language models (LLMs) have demonstrated significant success in various domain-specific tasks, with their performance often improving substantially after fine-tuning. However, fine-tuning with real-world data introduces privacy risks. To mitigate these risks, developers increasingly rely on synthetic data generation as an alternative to using real data, as data generated by traditional models is believed to be different from real-world data. However, with the advanced capabilities of LLMs, the distinction between real data and data generated by these models has become nearly indistinguishable. This convergence introduces similar privacy risks for generated data to those associated with real data. Our study investigates whether fine-tuning with LLM-generated data truly enhances privacy or introduces additional privacy risks by examining the structural characteristics of data generated by LLMs, focusing on two primary fine-tuning approaches: supervised fine-tuning (SFT) with unstructured (plain-text) generated data and self-instruct tuning. In the scenario of SFT, the data is put into a particular instruction tuning format used by previous studies. We use Personal Information Identifier (PII) leakage and Membership Inference Attacks (MIAs) on the Pythia Model Suite and Open Pre-trained Transformer (OPT) to measure privacy risks. Notably, after fine-tuning with unstructured generated data, the rate of successful PII extractions for Pythia increased by over 20%, highlighting the potential privacy implications of such approaches. Furthermore, the ROC-AUC score of MIAs for Pythia-6.9b, the second biggest model of the suite, increases over 40% after self-instruct tuning. Our results indicate the potential privacy risks associated with fine-tuning LLMs using generated data, underscoring the need for careful consideration of privacy safeguards in such approaches.
Related papers
- SafeSynthDP: Leveraging Large Language Models for Privacy-Preserving Synthetic Data Generation Using Differential Privacy [0.0]
We investigate capability of Large Language Models (Ms) to generate synthetic datasets with Differential Privacy (DP) mechanisms.
Our approach incorporates DP-based noise injection methods, including Laplace and Gaussian distributions, into the data generation process.
We then evaluate the utility of these DP-enhanced synthetic datasets by comparing the performance of ML models trained on them against models trained on the original data.
arXiv Detail & Related papers (2024-12-30T01:10:10Z) - Data Advisor: Dynamic Data Curation for Safety Alignment of Large Language Models [79.65071553905021]
We propose Data Advisor, a method for generating data that takes into account the characteristics of the desired dataset.
Data Advisor monitors the status of the generated data, identifies weaknesses in the current dataset, and advises the next iteration of data generation.
arXiv Detail & Related papers (2024-10-07T17:59:58Z) - KIPPS: Knowledge infusion in Privacy Preserving Synthetic Data
Generation [0.0]
Generative Deep Learning models struggle to model discrete and non-Gaussian features that have domain constraints.
Generative models create synthetic data that repeats sensitive features, which is a privacy risk.
This paper proposes a novel model, KIPPS, that infuses Domain and Regulatory Knowledge from Knowledge Graphs into Generative Deep Learning models for enhanced Privacy Preserving Synthetic data generation.
arXiv Detail & Related papers (2024-09-25T19:50:03Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
Text anonymization is crucial for sharing sensitive data while maintaining privacy.
Existing techniques face the emerging challenges of re-identification attack ability of Large Language Models.
This paper proposes a framework composed of three LLM-based components -- a privacy evaluator, a utility evaluator, and an optimization component.
arXiv Detail & Related papers (2024-07-16T14:28:56Z) - Mitigating the Privacy Issues in Retrieval-Augmented Generation (RAG) via Pure Synthetic Data [51.41288763521186]
Retrieval-augmented generation (RAG) enhances the outputs of language models by integrating relevant information retrieved from external knowledge sources.
RAG systems may face severe privacy risks when retrieving private data.
We propose using synthetic data as a privacy-preserving alternative for the retrieval data.
arXiv Detail & Related papers (2024-06-20T22:53:09Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
Federated learning (FL) enables leveraging distributed private data for model training in a privacy-preserving way.
We propose a novel FL framework termed FedGC, designed to mitigate data heterogeneity issues by diversifying private data with generative content.
We conduct a systematic empirical study on FedGC, covering diverse baselines, datasets, scenarios, and modalities.
arXiv Detail & Related papers (2023-12-10T07:38:56Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - Approximate, Adapt, Anonymize (3A): a Framework for Privacy Preserving
Training Data Release for Machine Learning [3.29354893777827]
We introduce a data release framework, 3A (Approximate, Adapt, Anonymize), to maximize data utility for machine learning.
We present experimental evidence showing minimal discrepancy between performance metrics of models trained on real versus privatized datasets.
arXiv Detail & Related papers (2023-07-04T18:37:11Z) - PrivGen: Preserving Privacy of Sequences Through Data Generation [14.579475552088688]
Sequential data can serve as a basis for research that will lead to improved processes.
Access and use of such data is usually limited or not permitted at all due to concerns about violating user privacy.
We propose PrivGen, an innovative method for generating data that maintains patterns and characteristics of the source data.
arXiv Detail & Related papers (2020-02-23T05:43:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.