Towards Opinion Shaping: A Deep Reinforcement Learning Approach in Bot-User Interactions
- URL: http://arxiv.org/abs/2409.11426v1
- Date: Thu, 12 Sep 2024 23:39:07 GMT
- Title: Towards Opinion Shaping: A Deep Reinforcement Learning Approach in Bot-User Interactions
- Authors: Farbod Siahkali, Saba Samadi, Hamed Kebriaei,
- Abstract summary: This paper explores the impact of interference in social network algorithms via user-bot interactions, focusing on theBounded Bounded Confidence Model (SBCM)
It integrates the Deep Deterministic Policy Gradient (DDPG) algorithm and its variants to experiment with different Deep Reinforcement Learning (DRL)
experimental results demonstrate that this approach can result in efficient opinion shaping, indicating its potential in deploying advertising resources on social platforms.
- Score: 2.85386288555414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper aims to investigate the impact of interference in social network algorithms via user-bot interactions, focusing on the Stochastic Bounded Confidence Model (SBCM). This paper explores two approaches: positioning bots controlled by agents into the network and targeted advertising under various circumstances, operating with an advertising budget. This study integrates the Deep Deterministic Policy Gradient (DDPG) algorithm and its variants to experiment with different Deep Reinforcement Learning (DRL). Finally, experimental results demonstrate that this approach can result in efficient opinion shaping, indicating its potential in deploying advertising resources on social platforms.
Related papers
- Multi-agent Off-policy Actor-Critic Reinforcement Learning for Partially Observable Environments [30.280532078714455]
This study proposes the use of a social learning method to estimate a global state within a multi-agent off-policy actor-critic algorithm for reinforcement learning.
We show that the difference between final outcomes, obtained when the global state is fully observed versus estimated through the social learning method, is $varepsilon$-bounded when an appropriate number of iterations of social learning updates are implemented.
arXiv Detail & Related papers (2024-07-06T06:51:14Z) - Neural Active Learning Beyond Bandits [69.99592173038903]
We study both stream-based and pool-based active learning with neural network approximations.
We propose two algorithms based on the newly designed exploitation and exploration neural networks for stream-based and pool-based active learning.
arXiv Detail & Related papers (2024-04-18T21:52:14Z) - Bayesian Off-Policy Evaluation and Learning for Large Action Spaces [14.203316003782604]
In interactive systems, actions are often correlated, presenting an opportunity for more sample-efficient off-policy evaluation and learning.
We introduce a unified Bayesian framework to capture these correlations through structured and informative priors.
We propose sDM, a generic Bayesian approach for OPE and OPL, grounded in both algorithmic and theoretical foundations.
arXiv Detail & Related papers (2024-02-22T16:09:45Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Cross-Domain Policy Adaptation via Value-Guided Data Filtering [57.62692881606099]
Generalizing policies across different domains with dynamics mismatch poses a significant challenge in reinforcement learning.
We present the Value-Guided Data Filtering (VGDF) algorithm, which selectively shares transitions from the source domain based on the proximity of paired value targets.
arXiv Detail & Related papers (2023-05-28T04:08:40Z) - Crowdsourcing Impacts: Exploring the Utility of Crowds for Anticipating
Societal Impacts of Algorithmic Decision Making [7.068913546756094]
We employ crowdsourcing to uncover different types of impact areas based on a set of governmental algorithmic decision making tools.
Our findings suggest that this method is effective at leveraging the cognitive diversity of the crowd to uncover a range of issues.
arXiv Detail & Related papers (2022-07-19T19:46:53Z) - Verified Probabilistic Policies for Deep Reinforcement Learning [6.85316573653194]
We tackle the problem of verifying probabilistic policies for deep reinforcement learning.
We propose an abstraction approach, based on interval Markov decision processes, that yields guarantees on a policy's execution.
We present techniques to build and solve these models using abstract interpretation, mixed-integer linear programming, entropy-based refinement and probabilistic model checking.
arXiv Detail & Related papers (2022-01-10T23:55:04Z) - Techniques Toward Optimizing Viewability in RTB Ad Campaigns Using
Reinforcement Learning [0.0]
Reinforcement learning (RL) is an effective technique for training decision-making agents through interactions with their environment.
In digital advertising, real-time bidding (RTB) is a common method of allocating advertising inventory through real-time auctions.
arXiv Detail & Related papers (2021-05-21T21:56:12Z) - Implicit Distributional Reinforcement Learning [61.166030238490634]
implicit distributional actor-critic (IDAC) built on two deep generator networks (DGNs)
Semi-implicit actor (SIA) powered by a flexible policy distribution.
We observe IDAC outperforms state-of-the-art algorithms on representative OpenAI Gym environments.
arXiv Detail & Related papers (2020-07-13T02:52:18Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension.
We construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation.
These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques.
arXiv Detail & Related papers (2020-02-10T04:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.