論文の概要: Learning a Terrain- and Robot-Aware Dynamics Model for Autonomous Mobile Robot Navigation
- arxiv url: http://arxiv.org/abs/2409.11452v1
- Date: Tue, 17 Sep 2024 16:46:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 20:09:46.033250
- Title: Learning a Terrain- and Robot-Aware Dynamics Model for Autonomous Mobile Robot Navigation
- Title(参考訳): 自律移動ロボットナビゲーションのための地形・ロボット認識ダイナミクスモデル学習
- Authors: Jan Achterhold, Suresh Guttikonda, Jens U. Kreber, Haolong Li, Joerg Stueckler,
- Abstract要約: 本稿では,確率的,地形的,ロボット対応のフォワードダイナミクスモデル(TRADYN)を学習するための新しいアプローチを提案する。
本研究では, 空間的に異なる摩擦係数を持つ地形特性を持つ一サイクル動的ロボットの2次元ナビゲーションシミュレーションにおいて, 提案手法の評価を行った。
- 参考スコア(独自算出の注目度): 8.261491880782769
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Mobile robots should be capable of planning cost-efficient paths for autonomous navigation. Typically, the terrain and robot properties are subject to variations. For instance, properties of the terrain such as friction may vary across different locations. Also, properties of the robot may change such as payloads or wear and tear, e.g., causing changing actuator gains or joint friction. Autonomous navigation approaches should thus be able to adapt to such variations. In this article, we propose a novel approach for learning a probabilistic, terrain- and robot-aware forward dynamics model (TRADYN) which can adapt to such variations and demonstrate its use for navigation. Our learning approach extends recent advances in meta-learning forward dynamics models based on Neural Processes for mobile robot navigation. We evaluate our method in simulation for 2D navigation of a robot with uni-cycle dynamics with varying properties on terrain with spatially varying friction coefficients. In our experiments, we demonstrate that TRADYN has lower prediction error over long time horizons than model ablations which do not adapt to robot or terrain variations. We also evaluate our model for navigation planning in a model-predictive control framework and under various sources of noise. We demonstrate that our approach yields improved performance in planning control-efficient paths by taking robot and terrain properties into account.
- Abstract(参考訳): 移動ロボットは、自律ナビゲーションのための費用効率の良い経路を計画できるはずである。
通常、地形とロボットの特性は変動する。
例えば、摩擦のような地形の性質は場所によって異なることがある。
また、ロボットの特性はペイロードや摩耗、涙などの変化があり、アクチュエータの利得の変化や関節摩擦を引き起こす。
したがって、自律的なナビゲーションアプローチは、このようなバリエーションに適応できるはずである。
本稿では,確率的,地形的,ロボット対応のフォワードダイナミクスモデル(TRADYN)の学習手法を提案する。
我々の学習アプローチは、移動ロボットナビゲーションのためのニューラルプロセスに基づくメタラーニングフォワードダイナミクスモデルの最近の進歩を拡張している。
本研究では, 空間的に異なる摩擦係数を持つ地形特性を持つ一サイクル動的ロボットの2次元ナビゲーションシミュレーションにおいて, 提案手法の評価を行った。
実験では,TRADYNはロボットや地形の変化に適応しないモデルアブレーションよりも,長時間水平線上での予測誤差が低いことを示した。
また,モデル予測制御フレームワークと各種ノイズ源下でのナビゲーション計画モデルの評価を行った。
提案手法は,ロボットと地形特性を考慮した制御効率の高い経路を計画する際の性能向上を実証する。
関連論文リスト
- Navigating the Human Maze: Real-Time Robot Pathfinding with Generative Imitation Learning [0.0]
目標条件付き自己回帰モデルを導入し,個人間の複雑な相互作用を捉える。
このモデルは、潜在的なロボット軌道サンプルを処理し、周囲の個人の反応を予測する。
論文 参考訳(メタデータ) (2024-08-07T14:32:41Z) - High-Degrees-of-Freedom Dynamic Neural Fields for Robot Self-Modeling and Motion Planning [6.229216953398305]
ロボットの自己モデル(英: Robot self-model)は、ロボットの運動計画タスクに使用できる身体形態の表現である。
本研究では,高次自由度を条件とした動的オブジェクト中心シーンのためのエンコーダに基づくニューラル密度場アーキテクチャを提案する。
7-DOFロボットテストセットでは、学習された自己モデルは、ロボットの次元ワークスペースの2%のChamfer-L2距離を達成する。
論文 参考訳(メタデータ) (2023-10-05T16:01:29Z) - Context-Conditional Navigation with a Learning-Based Terrain- and Robot-Aware Dynamics Model [11.800678688260081]
我々は,TRADYNと呼ばれる新しい確率的,地形的,ロボット対応のフォワードダイナミクスモデルを開発した。
本研究では,一輪式ロボットと空間的に異なる摩擦係数を持つ異なる地形配置を備えた2次元ナビゲーション環境において,本手法の評価を行った。
論文 参考訳(メタデータ) (2023-07-18T12:42:59Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - GNM: A General Navigation Model to Drive Any Robot [67.40225397212717]
視覚に基づくナビゲーションのための一般的な目標条件付きモデルは、多くの異なるが構造的に類似したロボットから得られたデータに基づいて訓練することができる。
ロボット間の効率的なデータ共有に必要な設計決定について分析する。
我々は、訓練されたGNMを、下四極子を含む様々な新しいロボットに展開する。
論文 参考訳(メタデータ) (2022-10-07T07:26:41Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
オペレーショナル・スペース・コントロール(OSC)は、操作のための効果的なタスクスペース・コントローラとして使われてきた。
本稿では,データ駆動型OSCのモデル誤差を補償するOSC for Adaptation and Robustness (OSCAR)を提案する。
本手法は,様々なシミュレーション操作問題に対して評価し,制御器のベースラインの配列よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-10-02T01:21:38Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
強化学習手法は、重要な性能を達成できるが、同じロボットプラットフォームで収集される大量のトレーニングデータを必要とする。
私たちはそれを、さまざまなロボットプラットフォームで共有される共通の構造を捉えるモデルを見つけることを目標とする、数ショットのメタラーニング問題として定式化します。
我々は,400個のロボットを用いて,実ロボットピッキング作業とシミュレーションリーチの枠組みを実験的に評価した。
論文 参考訳(メタデータ) (2021-03-05T14:16:20Z) - Learning Interaction-Aware Trajectory Predictions for Decentralized
Multi-Robot Motion Planning in Dynamic Environments [10.345048137438623]
本稿では、リカレントニューラルネットワーク(RNN)に基づく新しい軌道予測モデルを提案する。
次に,軌道予測モデルをマルチロボット衝突回避のための分散モデル予測制御(MPC)フレームワークに組み込む。
論文 参考訳(メタデータ) (2021-02-10T11:11:08Z) - Meta-Reinforcement Learning for Adaptive Motor Control in Changing Robot
Dynamics and Environments [3.5309638744466167]
この研究は、ロバストな移動のための異なる条件に制御ポリシーを適応させるメタラーニングアプローチを開発した。
提案手法は, インタラクションモデルを更新し, 推定された状態-作用軌道のアクションをサンプル化し, 最適なアクションを適用し, 報酬を最大化する。
論文 参考訳(メタデータ) (2021-01-19T12:57:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。